
Neural Networks in Cognitive Science

Jeff Yoshimi, Zoë Tosi, Scott Hotton, Pierre Beckmann, David Udell, Ellis Cain
Chelsea Gordon, David C. Noelle, Polyphony Bruna, Tim Meyer

Version 2025.1

Contents

Preface 6

1 Introduction 8
1.1 Structure of Neural Networks . 9
1.2 Computation in Neural Networks . 12

1.2.1 Performance vs. Learning . 12
1.2.2 The Three Object Detector . 14
1.2.3 Neural vs. Symbolic Computation . 15

2 Applications of Neural Networks 18
2.1 Engineering vs. Scientific applications . 18
2.2 Engineering uses of neural networks . 19
2.3 Computational neuroscience . 20
2.4 Connectionism . 21
2.5 Computational Cognitive Neuroscience . 23
2.6 From science to engineering and from engineering to science 24

3 History of Neural Networks 25
3.1 Pre-history . 25
3.2 Birth of Neural Networks . 28
3.3 The Cognitive Revolution . 29
3.4 The Age of the Perceptron . 31
3.5 The “Dark Ages” . 32
3.6 First Resurgence: Backprop and The PDP Group . 33
3.7 Second Decline and Second Resurgence: Convolutional Networks 34
3.8 The Age of Generative AI . 35

4 Basic Neuroscience 36
4.1 Neurons and synapses . 36

4.1.1 Neurons . 36
4.1.2 Synapses and neural dynamics . 37
4.1.3 Neuromodulators . 40

4.2 The Brain and its Neural Networks . 40
4.2.1 Cortex . 41
4.2.2 The Occipital Lobe . 42
4.2.3 The Parietal and Temporal Lobes . 44
4.2.4 The Frontal Lobe . 45
4.2.5 Other Neural Networks in the Brain . 46

1

CONTENTS 2

5 Activation Functions 49
5.1 Weighted Inputs and Activation Functions . 49
5.2 Threshold Activation Functions . 51
5.3 Linear Activation Functions . 52
5.4 Sigmoid Activation Functions . 53
5.5 Non-local activation functions . 54
5.6 Exercises . 56

6 Linear Algebra and Neural Networks 59
6.1 Vectors and Vector Spaces . 59
6.2 Vectors and Vector Spaces in Neural Networks . 61
6.3 Dimensionality Reduction . 62
6.4 The Dot Product . 64
6.5 Other vector comparison methods . 65
6.6 Vector Spaces as Metric Spaces . 69
6.7 Matrices . 70
6.8 Weight Matrices . 71
6.9 Matrix Multiplication (Part 1) . 73
6.10 Matrix Multiplication (Applications) . 75
6.11 Matrix Multiplication (Part 2) . 76
6.12 Flow Diagrams . 77
6.13 Tensors . 79
6.14 Appendix: Vector Operations . 79
6.15 Appendix: Elementwise (Hadamard) Product . 82
6.16 Appendix: Block Matrix Representations . 82
6.17 Exercises . 82

7 Data Science and Learning Basics 85
7.1 Data Science Workflow . 85
7.2 Datasets . 86
7.3 Data Wrangling (or Preprocessing) . 87
7.4 Datasets for Neural Networks . 90
7.5 Generalization and Testing Data . 91
7.6 Supervised vs. Unsupervised Learning . 92
7.7 Other types of model and learning algorithm . 94

8 Word Embeddings 96
8.1 Background in Computational Linguistics . 96
8.2 Document embeddings . 98
8.3 Word embeddings . 99

8.3.1 Co-occurrence Based Word Embeddings . 100
8.3.2 Co-occurrence Matrices . 101
8.3.3 Neural Network Based Embeddings . 101
8.3.4 Geometric Properties of Word Embeddings . 101
8.3.5 Evaluation of Word Embeddings . 102

8.4 Workflow: Creating Word Embeddings . 103
8.4.1 Sentence segmentation . 103
8.4.2 Word tokenization . 104
8.4.3 Normalization . 104
8.4.4 Create the word embeddings . 104
8.4.5 Using a word embedding to make a document embedding 104

CONTENTS 3

9 Unsupervised Learning 107
9.1 Introduction . 107
9.2 Hebbian Learning . 107
9.3 Hebbian Pattern Association for Feed-Forward Networks . 109
9.4 Oja’s Rule and Dimensionality Reduction Networks . 111
9.5 Competitive learning . 112

9.5.1 Simple Competitive Networks . 112
9.5.2 Self Organizing Maps . 115

10 Dynamical Systems Theory 118
10.1 Dynamical Systems Theory . 119
10.2 Parameters and State Variables . 123
10.3 Classification of orbits . 123

10.3.1 The Shapes of Orbits . 124
10.3.2 Attractors and Repellers . 126
10.3.3 Combining these classifications . 127

11 Unsupervised Learning in Recurrent Networks 128
11.1 Introduction . 128
11.2 Hebbian Pattern Association for Recurrent Networks . 128
11.3 Some features of recurrent auto-associators . 129
11.4 Hopfield Networks . 131

12 Supervised Learning 133
12.1 Labeled datasets . 133
12.2 Supervised Learning: A First Intuitive Pass . 134
12.3 Classification and Regression . 135
12.4 Visualizing Classification as Partitioning an Input Region into Decision Regions 137
12.5 Visualizing Regression as Fitting a Surface to a Cloud of Points 138
12.6 Error . 139
12.7 Error Surfaces and Gradient Descent . 141
12.8 Expansion of these methods . 143
12.9 SSE Exercises . 144

13 Least Mean Squares and Backprop 145
13.1 Least Mean Squares Rule . 145
13.2 LMS Example . 146
13.3 Linearly Separable and Inseparable Problems . 148
13.4 Backprop . 150
13.5 XOR and Internal Representations . 151
13.6 LMS Exercises . 152

14 Convolutional Neural Networks 154
14.1 Convolutional Layers . 154
14.2 Applying a Filter to a Volume . 156
14.3 Filter Banks (Representational Width) . 159
14.4 Multiple Convolutional Layers (Representational Depth) . 160

14.4.1 Pooling . 160
14.4.2 Flattening and Dense Layers . 161

14.5 Applications of Convolutional Networks . 161

CONTENTS 4

15 Internal Representations in Neural Networks 163
15.1 Internal Representations in Neural Networks . 163
15.2 Net Talk . 165
15.3 Elman’s Prediction Networks . 166
15.4 Deep Vision Networks . 167
15.5 Other Examples . 168

16 Supervised Recurrent Networks 169
16.1 Types of Supervised Recurrent Networks . 170
16.2 Simple Recurrent Networks . 171
16.3 Backpropagation Through Time . 173
16.4 Recurrent Networks and Language Generation . 174
16.5 Limitations of Supervised Recurrent Networks . 175

17 Transformer Architectures and LLMs 176
17.1 Learning to speak Internetese . 177
17.2 Training Using Next-Word Prediction . 177
17.3 How Text is Generated from a Feed-Forward Network . 179
17.4 The Transformer Architecture . 180

17.4.1 Blocks . 181
17.4.2 Softmax Outputs . 184
17.4.3 Parameters and hyperparameters . 185

17.5 LLMs and the Cognitive Sciences . 185
17.5.1 Stochastic Parrot or Genuine Intelligence? . 186
17.5.2 LLMs and Behavioral Sciences . 187
17.5.3 LLMs and Neuroscience . 189
17.5.4 LLMs and Philosophy . 191

18 Mechanistic Interpretability 194
18.1 Historical Context . 195
18.2 The Toolbox of Mechanistic Interpretability . 196

18.2.1 Linear Probes . 196
18.2.2 Sparse Autoencoders . 197
18.2.3 Activation Addition . 198

18.3 Major Results in Mechanistic Interpretability . 198
18.3.1 Toy Models . 198
18.3.2 Induction Heads . 199

19 Spiking Models: Neurons & Synapses 201
19.1 Level of abstraction . 202
19.2 Background: The Action Potential . 204
19.3 Integrate and Fire Models . 204

19.3.1 The Heaviside step function . 205
19.3.2 Linear Integrate and Fire . 205

19.4 Synapses with Spiking Neurons . 205
19.4.1 Spike Responses . 205

19.5 Long-term plasticity . 206
19.5.1 Spike-Timing Dependent Plasticity (STDP) . 206
19.5.2 STDP . 206

20 Reservoir Networks 211

21 Glossary 216

A Logic Gates in Neural Networks 229

CONTENTS 5

Figure Attributions 231

References 235

Preface

This book was written by a group of researchers associated with UC Merced’s Cognitive and Information
Sciences Program (http://cogsci.ucmerced.edu/) to support learning about neural networks in a visual
and interactive way. It is intended to be used in conjunction with Simbrain (http://www.simbrain.net), a
free open source software package that makes it easy to build neural network simulations.1 The philosophy
behind the book is that it is possible to learn about neural networks even with minimal mathematical
background, and that this is facilitated by the use of a visual simulation environment like Simbrain.

Though little mathematical background is assumed, there is a lot of mathematical detail in the book.
Most of these details are included in lengthy footnotes. We have not shied away from heavy use of footnotes,
since they provide a convenient way of providing additional layers of information independently from the
main text.

Currently the book focuses on neural networks specifically in cognitive science, and to a lesser extent
neuroscience. Of course today neural networks are best known as a tool in machine learning, and in particular
deep learning. The book does provide some background relevant to machine learning uses of neural networks,
but that is not its current focus. Given the modular nature of this book, it may develop in a way that
encompasses these uses of neural networks, but it does not do so at present.

Several other sources written in the same spirit as this book should be mentioned: Randall O’Reilly and
Yuko Munakata’s Computational Cognitive Neuroscience book, and associated materials, which are based on
the free, open source Emergent simulation platform2, as well as several sources that provide more guidance
on deep learning and machine learning, with the assistance of interactive tools and visualizations, some of
which run directly in the browser.3

This book is meant to be improved, corrected, and expanded on a regular basis, and hopefully, remixed
and remastered by others.4 If you fix or improve something, please submit a pull request, and if you
have suggestions, post an issue on the github repository, which is here: https://github.com/simbrain/

NeuralNetworksCogSciBook. The plan is to have regular releases each year. Hence, the year-based version-
ing, e.g. version 2022.1, 2022.2, etc.

To support this flexibility, custom scripts and LATEXcommands are provided. The most complete version
of the book (the “master document”) is hosted on the github repository. Those chapters can be combined
and remixed in your own “container” documents that only contain the information you need for a particular
use (e.g. for a particular class you are teaching). You can fork the repository and create your own container
documents containing whichever chapters you like, including new material of your own, or adaptations of
existing chapters. Guidelines for assembling your own container documents, and for producing new chapters
(which we hope you will share with us!), are in the readme document of the github repo, which can be found
just by scrolling to the bottom of https://github.com/simbrain/NeuralNetworksCogSciBook.

All glossary items are listed in bold face. For any bold faced glossary item there should be a corre-
sponding entry in the glossary in the back of the book.

Chapter authors are listed in the order of their contribution to that chapter. Authors listed on the front
cover of a container document are ordered by the weighted sum of their contributions to the chapters in that

1For more information see the online documentation at http://www.simbrain.net/Documentation/v3/SimbrainDocs.html,
the Simbrain youtube channel or search #Simbrain on twitter (sort by “latest”).

2https://compcogneuro.org/
3See http://neuralnetworksanddeeplearning.com/ and the articles at https://distill.pub/, as well as https://

playground.tensorflow.org/. Also see https://www.tensorflow.org/tensorboard/get_started and Jay McClelland’s
Matlab-based course: https://web.stanford.edu/group/pdplab/pdphandbook/

4Many issues and plans for improvement are included as comments in the latex documents, which you are welcome to peruse.

6

http://cogsci.ucmerced.edu/
http://www.simbrain.net
https://github.com/simbrain/NeuralNetworksCogSciBook
https://github.com/simbrain/NeuralNetworksCogSciBook
https://github.com/simbrain/NeuralNetworksCogSciBook
http://www.simbrain.net/Documentation/v3/SimbrainDocs.html
https://compcogneuro.org/
http://neuralnetworksanddeeplearning.com/
https://distill.pub/
https://playground.tensorflow.org/
https://playground.tensorflow.org/
https://www.tensorflow.org/tensorboard/get_started
https://web.stanford.edu/group/pdplab/pdphandbook/

CONTENTS 7

container document. Author orderings are produced using a python script included in the repository.
When references have a “*” symbol attached to them, it means that they refer to a chapter, section, or

figure in the master document but not that container document. The master document is a kind of global
container document hosted at the main github repository, that contains all chapters known to the original
team.

The first version of this book was written by Jeff Yoshimi, as was the infrastructure to support it.
Graphics support was provided by Pamela Payne, Elizabeth Reagh, and Soraya Boza (credits for individual
figures are listed at the end of the document). David Cuesta, Eric Schwitzgebel, Eric Thomson reviewed
several chapters in 2024, and additional feedback was provided by Shervin Nosrati, Kate Totter, Julia Ton,
and Matthew Lloyd. Sergio Ponce de Leon reviewed several chapters in 2022 and 2024. Liza Oh reviewed
several chapters in Fall 2021. Tim Meyer helped review and edit the Spring 2017 and Fall 2017 versions of
the manuscript. Sharai Wilson provided a great deal of help with the manuscript in Summer 2017. Every
time the course is taught students and teaching assistants provide valuable feedback, going back to 2006
(Spring term of the year UC Merced opened, and the first time an earlier version of this text was used).
Ricardo Velasco helped with many aspects of producing the first versions of this text in the 2000s.

As noted above, the book is closely tied to a separate open source project, Simbrain. Simbrain credits
are here: http://simbrain.net/SimbrainCredits.html.

This work is licensed under the Creative Commons Attribution 4.0 Attribution-ShareAlike CC BY-SA
License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/. As
noted in the description of the license, this allows the content here to be extended and remixed, but assumes
that in such a case changes be noted “but not in any way that suggests the licensor endorses you or your
use.”

http://simbrain.net/SimbrainCredits.html
https://creativecommons.org/licenses/by-sa/4.0/

Chapter 1

Introduction
Jeff Yoshimi

The phrase “neural network” has several meanings. A biological neural network is an actual set of
interconnected neurons in an animal brain. Fig. 1.1 (left) shows a biological neural network. “Neural
network” can also mean artificial neural network (or “ANN”), that is, a computer model that has certain
things in common with biological neural networks. Fig. 1.1 (right) shows an artificial neural network. It has
“nodes” and “weights” that are analogous to the neurons and synapses of a biological neural network. We
focus on artificial neural networks in this book, and when we refer to “neural networks” we usually mean
artificial neural networks.

Figure 1.1: Left: A biological neural network. Right: A simple artificial neural network built in Simbrain,
with three nodes connecting to another node via three weights.

Neural networks can be made to do many fascinating things. They can, for example, drive cars, forecast
weather patterns, recognize faces in images, and play the game Go at championship levels. Recently, they
have become eerily good at producing human-level written text and images (see the discussion of GPT-3 in
chapter 16 or search the web for images produced by Dall-E). They have been used to model the brain at
all of its levels, from individual neurons up to the entire brain. They have been used to model cognition in
all of its forms, including memory, perception, categorization, language, and attention. In this chapter, we
give a general introduction to neural networks, and survey some of these different ways they are used.1

1Some time in the 2010s or 2020s, it became standard to refer to neural networks as a form of “AI” or ”Artificial Intelligence.”
From this standpoint, “AI” is a covering term that includes all the many forms of computer simulation that attempt to behave
in an intelligent and often human-like manner. In the earlier literature “AI” was used to refer to more classical, symbolic forms
of artificially intelligent system, and in that era there was a kind of battle between AI and neural networks. Some of this history
is covered in section 3.3. The term “AI” is mostly avoided in this text.

8

CHAPTER 1. INTRODUCTION 9

1.1 Structure of Neural Networks

In figure 1.2 a simple neural network is shown with some of its parts labeled. In this section, we review
the parts of neural networks (nodes and weights), the ways they can be structured (their topology), and
the relationship between a network and its environment. In each case, bear in mind that what precisely the
concepts mean depends on the type of model we are dealing with.2

Figure 1.2: Nodes and their activations; weights and their strengths.

In the figure, a circle with a number in it is an artificial neuron or node (nodes are also referred to as
“units”).3 The number inside a circle corresponds to that node’s activation. In Simbrain, red corresponds
to an “active” neuron (activation greater than 0), and how deep the red is corresponds to how close the
activation is to its maximum value. Blue corresponds to an “inhibited” neuron (activation less than 0), and
how deep the blue is corresponds to how close the activation is to its minimum value. White corresponds
to an inactive neuron (activation equals 0). In a computational neuroscience model, these activations might
represent the firing rate or membrane potential of a real neuron. In a psychological model, the number might
represent the presence of an item in working memory, or the strength of an unconscious belief. As we will
see, there is a great deal of variance in what concepts such as activation are taken to mean.

The lines with filled disks at the end of them are artificial synaptic connections or weights. These
correspond to connections between nodes, which control how activation flows through a network. The
weights have a value, a strength. The larger the absolute value of a weight strength, the “stronger” it is. 2
is a stronger positive weight than 1 is, and -2 is a stronger negative weight than -1 is. Thus, to strengthen
a weight is to increase its absolute value, and to weaken it is to reduce its absolute value. Stronger weights
are shown as larger disks in Simbrain. The actual weight strength can be seen by hovering over the weights
or double clicking on them. As activation flows through a network, the weights with a positive strength
(the red weights in Simbrain) tend to enhance activation, and the weights with a negative strength (the blue
weights) tend to reduce activation.4 In neuroscience terms, these correspond to excitatory and inhibitory
synapses (and the neurons at the source of these synapses called excitatory and inhibitory neurons). As
you play with simulations in Simbrain and study the chapters to come, you will begin to get a feel for how
different kinds of weights have different kinds of impacts on the flow of activation in a network.

What weight strength represents depends on what kind of model we are dealing with (see chapter 2).
In a computational neuroscience model, it would represent synaptic efficacy–roughly speaking the impact
a pre-synaptic neuron can have on a post-synaptic neuron after the pre-synaptic neuron fires an action
potential. In a connectionist or psychological model, the strength might represent an association between
concepts. In a machine learning model, there might be no direct interpretation of weight strengths at all:
they are mere parameters in a statistical model that does something useful, like recognize faces in images.

2Neural networks can be used for engineering, modeling the brain, or modeling the mind. These different uses are discussed
in chapter 2. Depending on the way a network is being used, the way its parts are interpreted differs, as we’ll see.

3Sometimes, when the context makes it clear that we are talking about an artificial neural network, terms like “neuron” and
“synapse” are used to mean artificial neuron (node) or artificial synapse (weight).

4For more details on the graphic representation see http://www.simbrain.net/Documentation/v3/Pages/Network/

visualConventions.html.

http://www.simbrain.net/Documentation/v3/Pages/Network/visualConventions.html
http://www.simbrain.net/Documentation/v3/Pages/Network/visualConventions.html

CHAPTER 1. INTRODUCTION 10

Node activations change in accordance with activation functions (discussed in chapter 5), and weight
strengths change in accordance with different types of learning algorithms discussed throughout the book.
Indeed, how to train neural networks is one of the most fundamental topics in the field, and is the focus of
several chapters, including chapters 9, 12 and 13.

In some models, a node can also produce a spike, which is a discrete event that corresponds to the action
potential of a neuron.5 Spiking neurons have their own rules and structures, which we discuss in chapter 19.

Nodes and weights are the basic parts of a neural network. Together, they form a network structure, or
mathematically, a graph6, where the nodes correspond to vertices, and the weights correspond to edges.7

The graph-structure formed by a network’s nodes and weights is the network’s topology. At a first pass,
neural network topologies fall into one of two rough types shown in Fig. 1.3: feed-forward and recurrent.

A feed-forward network is a sequence of layers of unconnected neurons stacked on top of each other
such that each layer is fully connected to the next one in the sequence (each node in one layer sends a
connection to every node in the next layer).8 Activity in this kind of network flows from an input layer
through a sequence of hidden layers and then to an output layer. Sometimes there are no hidden layers and
we have a feed-forward network that connects directly from an input layer to an output layer.

In a feed-forward network activity simply passes through the node layers; when activation is added to
the input nodes and the network is updated, that activation flows from layer to layer and is then erased.
Feed-forward networks are often classifiers: an input (which might represent an image, or a smell) passes
through the layers of the network, and the output activations then represent a way of classifying the input
(saying who is in the image, or what object is being smelled).

In a feed-forward network we can distinguish between a node layer and a weight layer.9 We will
take node layers in a feedforward network to be collections of nodes that are treated as a group, and weight
layers to be collections of weights that connect node layers. Often, these are represented using vectors and
matrices, respectively (see chapter 6). The network in Fig. 1.3 has three node layers (labelled “input layer”,
“hidden layer”, and “output layer”) and two weight layers (labelled “1-2” and “2-3”).10 When used without
qualification, we use the term “layer” to mean “node layer”.11

We can also distinguish between the “representational depth” and “representational width” of a feed-
forward network. We take the representational depth of network to correspond to how many layers or
layer-like structures the network has. Thus a “deep” network is one with many node and weight layers.
The representational width of a given node layer corresponds to how many nodes it has.12 We will see
throughout the book that these two concepts provide distinct ways of understanding the representational
capacities of neural networks. A wider layer can develop more sophisticated representations of its inputs.
A network with more depth can develop representations that combine features of other representations, so
that we get increasingly complex “representations of representations.” The layers of a network trained to
recognize images can go from representing lines, to sets of lines (that is, shapes), to sets of shapes, etc. (see
the discussion of Selfridge in chapter 3, and of convolutional networks in chapter 14). Analogues of these
intuitive concepts of depth and width persist in more complex types of networks, like transformers (chapter

5A spike is represented in Simbrain by a node and all its outgoing connections turning yellow. For an illustration of a spiking
node and how it looks in Simbrain, see http://www.simbrain.net/Documentation/v3/Pages/Network/neuron.html.

6https://en.wikipedia.org/wiki/Graph_(discrete_mathematics).
7A neural network is a special type of graph: a vertex-labeled, edge-labeled, directed graph. This means that the edges

between nodes have a direction (the graph is directed), and that numbers are associated with the vertices and edges (it is
vertex-labeled and edge-labeled).

8 In graph-theoretic terms, such a network is a directed, acyclic, multipartite graph. It is is acyclic because there are no
cycles; there is is no way to “move” from one vertex back to itself along a sequence of vertices connected by edges. It is
multi-partite because the vertices can be partitioned into independent sets (node layers), within which none of the vertices are
connected. When such a network is not fully-connected from one layer to the next, it is still often referred to as “feed-forward”.
In some cases weights skip over a layer (e.g. go straight from input to output despite the presence of a hidden layer) and again,
since activity will still flow “forward”, this will be referred to as a feed-forward network.

9The distinctions introduced in this paragraph and the next one are stipulations made to organize the material in a coherent
way. Terms like “node layer” and “weight layer” are not standard, but they help organize the material in this book.

10To make matters even more confusing, sometimes the input node layer is not counted as a layer.
11In Simbrain, node and weight layers are both represented as groups, indicated by the yellow interaction boxes: http:

//www.simbrain.net/Documentation/v3/Pages/Network/groups.html.
12While the concept of depth is fairly common, “width” as a named concept is not. Be aware that “width” and “depth” are

also used to refer to the shapes of tensors (see section 6.13), but the meaning is different there, and we assume our meaning is
clear in context.

http://www.simbrain.net/Documentation/v3/Pages/Network/neuron.html
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
http://www.simbrain.net/Documentation/v3/Pages/Network/groups.html
http://www.simbrain.net/Documentation/v3/Pages/Network/groups.html

CHAPTER 1. INTRODUCTION 11

17), where we can contrast the number of heads in a given block (width) with the number of blocks that are
stacked on top of each other (depth).

Figure 1.3: Feed-forward network (left) and recurrent network (right). Gray arrows give a sense of how
activation flows through them. The feed–forward network has 3 node layers (a representational “depth” of
3, which is not deep; this is not a “deep network”), and the layers have representational “widths” of 5, 3,
and 5.

In a recurrent network, the nodes are interconnected in such a way that activity can flow in repeating
cycles.13 Recurrent networks display complex dynamical behaviors that don’t occur in feed-forward networks
since activity in the network cannot always “leave” the network. Most biological neural networks are recur-
rent. In machine learning, recurrent networks can be used to simulate dynamical processes, for example, to
mimic human speech, or create artificial music.

Figure 1.4: A deep neural network, trained to recognize images. The convolutional layers scan over the
inputs they are linked to. Note that individual nodes and connections are not visible in this image.

The distinction between feedforward and recurrent networks is a useful first-pass way to organize the
field. However, more complex architectures are possible, and since the 2010s, two specific architectures have
been especially common: convolutional networks and transformers. There is not space to go into these
structures here, but we discuss them in chapters 14 and 17. These networks operate on data structures
more complex than arrays of numbers, for example on 3d arrays or volumes of numbers, which are a kind of
tensor (tensors are discussed in section 6.13). An example of a convolutional network is shown in figure 1.4.

13In graph-theoretic terms, this is a cyclic graph, which contains at least one cycle. Recall from footnote 8 that a directed
cycle is a sequence of directed edges that begin and end at the same vertex. That is, starting at one node of such a network,
we can “travel” from one node to another via the connections and end up back where we started.

CHAPTER 1. INTRODUCTION 12

Networks like this are so large that we can’t represent each node and weight separately, and the concept of
a layer becomes more complex as more structure and processing is packed into each layer. But the basic
concepts of feedforward and recurrent networks that structure the first part of this book still are useful for
understanding these more complex forms of neural network.

Figure 1.5: The relationship between a neural network and an environment. An “environment” is often
something as simple as a table of values (middle row). However it can also be something more complex, like
a virtual world (bottom row).

Networks almost always exist in some kind of environment, which gathers inputs for a network and
receives its outputs. In cognitive science, the environment of our brain’s neural network is the literal envi-
ronment around us. In some simulations–for example, reinforcement learning simulations–simulated environ-
ments are used for neural networks. But if we take environment in a broader sense to simply be whatever it
is that produces inputs to an artificial neural network and whatever deals with the outputs, then we capture
a broader range of cases.14 For example, a neural network that converts speech to text can be connected
to audio sensors, like the microphone on your phone. It can take audio in, convert it to text, and send the
result out via the speakers. By far the most common way a neural network is linked to inputs and outputs,
especially when building and testing them, is via tables of data. Training and testing datasets are discussed
at length in chapter 7. In Simbrain, we will also link neural networks to virtual environments. Figure
1.5 shows how some of these configurations might look. Couplings between a network and an environment
occur at special nodes: an input node is influenced by the environment, while an output node exerts an
influence on the environment. In figure 1.3 (left), for example, the input nodes are the nodes in the input
layer, and the output nodes are the nodes in the output layer.15

1.2 Computation in Neural Networks

We’ve seen what the parts of a neural network are and learned some basic concepts relating to their structure.
We now turn to a few concrete examples in Simbrain that give a sense of how computation works in neural
networks. We first develop a basic intuition for how they channel information, and we then contrast this
with computation in a classical computational system.

1.2.1 Performance vs. Learning

To develop an intuition for how neural networks “channel information” we can break the issue into two parts:
performance and learning. Performance corresponds to how information flows through a network, given a
fixed pattern of connectivity. Learning corresponds to how patterns of connectivity (and other networks

14Here again we are using “environment” in a technical sense that does not track all standard usage, but that is useful for
organizing the material and that also draws helpful conceptual connections.

15Information on how to couple nodes to an environment in a Simbrain simulation, and thus treat them as input or output
nodes, is available here: http://www.simbrain.net/Documentation/v3/Pages/Workspace/Couplings.html.

http://www.simbrain.net/Documentation/v3/Pages/Workspace/Couplings.html

CHAPTER 1. INTRODUCTION 13

parameters) are adjusted to make a neural network do things more effectively. These are two different types
of dynamics–a fast dynamics of performance and a slower dynamics of learning–and it is important to get a
feel for them right from the start.

To understand performance, consider a network that has already been trained, and ask how different
inputs propagate through it. That is, we don’t change its weights but only change its inputs to see how it
responds, given its weights. When you use ChatGPT, you are using a network whose weights have already
been set. You are using the final product of a long training process. You write text prompts, they propagate
through a bunch of nodes, and new words are generated, one word at a time. When you talk to a grown
person, something similar is happening. They are not learning (much) over the course of a few seconds, but
their internal networks are reacting to what you say.

Figure 1.6: A simple feed-forward network with clamped inputs, which can be used to develop an intuition
for how performance and learning work. The nodes are linear nodes that take a weighted sum of inputs.
The weight strengths are 1 and −1, so the output is 5× 1 + 3×−1 = 5− 3 = 2. By adjusting the inputs up
and down, we can make the output activation be whatever we want within the upper and lower bounds of
a node (performance). Or, for a fixed pattern of input, we can make the output be whatever we want it to
be by changing the weights.

How does this work? Consider the network shown in figure 1.6: it’s a simple feed-forward network with
two input nodes and one output node. The output node’s activation is obtained by multiplying each input
activation by the strength of the intervening weight and adding these products together.16 The inputs are
clamped nodes and are represented with a bold outline. This means they will not change their value when
we update the network, unless we manually update them.17 The weight strengths are 1 and −1, and so the
output is 5× 1 + 3×−1 = 5− 3 = 2. By adjusting the two inputs up and down, we can get the output to be
whatever we want. What if we want the output to be 5? We can do that by bumping the left “excitatory”
input up to 8, so that the output is 8 × 1 + 3 ×−1 = 8 − 3 = 5, or by leaving the left input 5 and reducing
the right “inhibitory” input to 0, so that it stops inhibiting and the output is just 5 × 1 = 5.18 Now try
some more examples. How could you adjust the excitatory and inhibitory inputs to get an output of 0, 10,
-4, or 2.5?

If you have built this network in Simbrain (which is quite easy to do), try pressing the play button and
adjusting the inputs up and down to see how this works. It’s just adding weighted inputs together. What
could be easier? The same thing is happening even in a giant neural network: each node is taking a weighted
sum of its inputs, and in this way, activation propagates through the network. Or try this as an exercise:

16This is an example of a linear activation function. See chapter 5. Often the weighted sum is transformed or processed in
further ways. Also note that we are using whole numbers just to ease into the idea, but neural networks generally use floating
small point numbers between 0 and 1, like .84 or -.23.

17If we don’t clamp them, then when we update the network they will immediately go to zero, because they have no
environment; there are no inputs to them.

18In the brain we can speak of excitatory and inhibitory neurons (see chapter 4) because the axons extending out from a
neuron lead either to all inhibitory synapses or all excitatory synapses. However, in an artificial neural network, a node can
fan-out to a mix of positive and negative weights, so the terms ‘excitatory’ and ‘inhibitory’ nodes may not always apply. But
in this case those terms can be used.

CHAPTER 1. INTRODUCTION 14

think of an output activation you’d like to see in either the left or right network, and then start adjusting
the inputs up and down until you get what you are after.

We now consider learning, where a network’s weights and other parameters are changed in a way that
changes its performance. When a network fails to perform the way what we want it to, it must learn. And
so we train neural networks. To get a feel for how this works, we can return to our simple network, and this
time instead of adjusting the inputs, we can adjust the weights, to see how this changes the way information
flows through it.19 Given that both inputs are positive, we can think of positive weights as enhancing inputs
and negative weights as diminishing inputs. That is, in this case:

1. Positive weights (red disks) increase or excite outputs. They “heat things up.” As they are strength-
ened, the output gets larger.

2. Negative weights (blue disks) decrease or inhibit outputs. They “cool things down.” As they are
strengthened (as their absolute value is increased), the output gets smaller.

The two weights are like two knobs that we can turn up or down, that we can use to tune the network’s
response to a set of inputs. Suppose we want the output to be some other value besides 2, like 7, but we do
not want to change the inputs. We want the current inputs to produce a 7 rather than 2. To do this, we
could strengthen the positive weight so that it makes the output larger. In particular, we could increase it
to be 2, so that we get 5 × 2 + 3 × −1 = 10 − 3 = 7. Or what if we wanted to get an output of 1? In that
case, we could leave the positive weight at 2 and strengthen the negative weight from −1 to −2 so that the
output is now 5×2+3×−3 = 10−9 = 1.20 With these two knobs we can get the network to do pretty much
whatever we want. Most of the theory of neural networks is about automatically tuning the weights and
other parameters of a network–often many thousands, millions, or more–to get them to channel information
in a useful way.

1.2.2 The Three Object Detector

An example that illustrates both performance and learning is the simulation threeObjectsDist.zip. A screen
shot of the network, which we call the “three object detector”, is shown in Fig. 1.7.21 The three object
detector has a feed-forward topology with three nodes in the input layer, seven nodes in the hidden layer,
and three nodes in the output layer.22 In this example we also see how a network can be linked to a virtual
environment. The mouse on the right of figure 1.7 is hooked up to this network. When the mouse is moved
around, the activation in the input nodes changes. This simulates the way odor molecules impact the inner
lining of the nose, causing sensory neurons to fire at different levels. So the input layer is a kind of simulated
nose.

Let’s first consider its performance. Press play and move the mouse around. (As you do, the weights are
not changing). When we move the mouse close to an object, the corresponding output responds. When we
move it away, it decays back to zero. This is called a classification task. It is performing well. It responds
to each object by activating the appropriate node and no others.

However, this did not just happen by luck. We had to train the network. To see this, try pressing w and
then r to randomize all the weights. That more or less destroys what it has learned. Now press play and move
the mouse around again. It can no longer classify inputs. But if you double click the interaction box labeled
Backprop and hit the play button in the resulting dialog, it quickly learns to perform the classification task

19Note that we are ignoring negative activations for now, because they can be difficult to reason about (when you change a
weight from -1 to -2, are you strengthening it or turning it down?). In fact, in some contexts, negative activations are taken
to be unrealistic or problematic. Neuron spiking rates are always positive, for example. In recent years, the “relu” activation
function, which disallows negative activations, has become extremely popular in deep learning.

20In the first case, we could also weaken the negative weight so that it inhibits the output less. In the second case, we could
also weaken the positive weight so it excites the output less.

21A video about the three object detector (including information about how to load it) is available at https://youtu.be/

yYzUmcPaurI?t=380.
22The example is not meant to model the brain directly. It is more abstract: it classifies inputs in a brain-like way. It takes

a pattern of inputs, and transforms those inputs through a network of connections. This is similar to the way information
processing occurs in the brain. But it is not a realistic simulation of a brain circuit (as we will see, it is a “connectionist
network” as opposed to a “computational neuroscience” model; it is also similar to how computations are done in engineering
applications).

https://youtu.be/yYzUmcPaurI?t=380
https://youtu.be/yYzUmcPaurI?t=380

CHAPTER 1. INTRODUCTION 15

Figure 1.7: Simple feed-forward network that recognizes three objects.

again. Error drops to zero, and it does what we want. This shows on a small scale how most neural networks
are trained.

1.2.3 Neural vs. Symbolic Computation

In the history of cognitive science, one of the earliest debates was between those who thought human
information processing was more like what occurs in a classical digital computer–that is, rule-governed
manipulation of symbols–and those who thought it was more like what happens in the brain, where patterns
of activation are transformed as they propagate through networks of synaptic connections (see section 3.3).23

We won’t go into the details of this debate here, but we will highlight a few prominent differences between
the way a digital computer processes information and the way neural networks do, because they help to see
what is distinctive about neural networks.

We can use the 3-object detector to illustrate these contrasts. In a classical computer, discrete symbols
(comprised of strings of 0s and 1s, or “bits”) are operated on by rules, in a sequential manner. Bits of
information are placed in registers on a computer’s central processing unit (CPU), and logical rules in the
CPU’s instruction set are applied to these bits. Computers are hand-programmed to do useful things. The
inside of a CPU and the memory systems on a computer are carefully controlled environments. They do not
do well with noisy signals or damage. Computation in a neural network is different. Neural computation
is not based on sequential, rule-based operations on bits; rather, it is based on parallel operations where
patterns of node activations are transformed by weight strengths.24 Neural networks are also more tolerant
of noisy signals and damage than digital computers are. Moreover, they are not programmed in the way a
computer is, but they are trained in something like the way a human child is.

Let’s use the three object detector simulation to consider some of these contrasts in more detail.
Networks are trained via learning rather than being programmed. We show the network what we want it

to do, and it learns to do it. In the three object detector, for example, here is (very roughly) what happened:
we put the mouse near the fish, and said, “when you smell something like this, fire your first node.” Then
we did the same thing with the Gouda and blue cheese. Each time we exposed the network to an object,
we used the “backprop” algorithm (discussed in a chapter 12) to adjust the network’s weights. At first, the
network made mistakes, but with each exposure to an object, the weights were changed a little, and over
time, it got better and better at recognizing cheese, much like how humans and animals gradually get better
at doing things with training. This is called supervised learning, since we know the correct output for
each input and can tell the network exactly what output it should produce for any given input. The great
thing about this is that once we’ve trained the network on some data, generalization is possible, where it
can deal with new data it’s never been exposed to before. We can train a network to respond to a bunch of

23Of course, neural network simulations are usually run on a traditional computer performing classical computations. But that
is a convenient way of implementing the formal structure of a neural network. These implementation can still take advantage of
all the special properties of neural networks. Moreover, it is in fact possible to implement neural networks directly on hardware.

24We can often represent this as a transformation of activation vectors (lists of activation values) by weight matrices (tables
representing weight strengths). So, while the basic formalism of classical computation is logic, the basic formalism of neural
networks is linear algebra, which we study in chapter 6.

CHAPTER 1. INTRODUCTION 16

cheese we have available, and on that basis it can recognize new pieces of cheese it’s never seen before. This
is part of what makes neural networks so valuable, both the one used in your cell phones and also the one
that is inside your skull right now helping you read this. After a bit of training and learning, they can be
let loose in the world and deal with brand new situations.

This isn’t the only way neural networks can be trained. For example, neural networks can also learn
by a system of rewards and punishments (reinforcement learning). They can also learn without any kind
of training signal or reinforcement, simply by picking up on the statistical structure of their environment
(unsupervised learning).25

Second, neural networks emphasize parallel processing. Whereas digital computers normally do things
one at a time, in a sequence, neural networks do a lot of things at the same time. To see the difference this
can make, consider a simple problem: finding which of ten cups has a jelly bean under it. A serial approach
would lift each cup up, one at a time, until the jelly bean was found. A parallel approach would lift all ten
cups up at once. Neural networks operate like this, processing information in all the nodes, all at once, all
the time. This is easy to see in the three object detector simulation: when you run the simulation and drag
the mouse around, the activations of all the nodes will change in parallel based on the new inputs.26

Third, neural networks experience graceful degradation when they are damaged (this is also called
“fault tolerance”). They are not brittle in the way a digital computer is. You can start deleting the weights
of a neural network, and it will still work reasonably well. You can try doing this on the three object detector!
In a similar way, if you lose a few neurons and /or synapses, you will be just fine. Of course, if you lose enough
neurons and synapses it, will start to show, but it will happen gradually and proportionally to the damage. It
is in this sense that neural networks degrade “gracefully.”27 A digital computer, by contrast, is not designed
to continue functioning if its components are damaged. Pluck a micro-chip out of the motherboard, or snip
a few wires, and there’s a good chance your computer will stop working altogether.28

Fourth, neural networks are well-suited to using distributed representations, rather than localist rep-
resentations. Mental representations (for example, your knowledge of your grandmother) can be thought of
in two ways: as being locally stored in one location in the brain, or as being distributed over many locations.
A local representation scheme for the brain is sometimes called a “grandmother cell” doctrine, because it
implies that there is just one neuron in your brain that represents your grandmother. In the context of
neural networks, we can say that an object is locally represented by a neuron when activation of that neuron
indicates the presence of that object. For example, in figure 1.8, blue cheese is locally represented by the
neuron labelled “Center 5”. When that neuron is activated, the blue cheese is present (here, “activation”
means having a non-zero, positive activation value).29

In contrast, we can say that an object has a distributed representation in a neural network when a
particular pattern of activation over a set of nodes indicates the presence of that object. In figure 1.9, the
bottle of poison has a distributed representation. When the poison is present, a specific pattern of activation
(.1, 1, .7, 0, .2) occurs across the whole set of nodes.

25Sometimes the weights are hand-crafted, as in the IAC networks discussed in chapter 2. But that is the exception that
proves the rule. IAC networks are great at illustrating activation dynamics, but are unusual insofar as the weight strengths are
not learned from data but are hand-set by a human.

26Of course, you run Simbrain on a conventional computer, so that in reality, the neural network is updated in serial. But
this is just an artifact for convenience. In our brains, neurons fire in parallel, and large scale simulations of neural networks are
also run in parallel (often on massive distributed computing clusters). In fact, all of the advances in the field since 2010 require
parallel computation to achieve the required performance.

27This is related to the fact that they operate in parallel rather than serial. A neural network often has redundant wiring,
which can compensate for damage.

28A related point is that neural networks are good at handling noisy inputs. Digital computers don’t like noisy input: they
respond only to clean, precise inputs. Anyone who has worked with computers has some understanding of this. To get through
a company’s phone tree, you have to enter just the right sequence of numbers–no mistakes allowed! But show me the same
flower ten times, and I will see it as the same flower, even though the input to my brain is changing slightly (the lighting
changes, things in my retina change, the whole process is noisy). You can see this in the Simbrain simulation by dragging the
mouse around. Notice that even while the inputs change slightly, the network continues to recognize which object it’s looking
at.

29Some older types of neural network use only local representations (e.g. the IAC networks discussed in chapter 2), and we
will see that it is sometimes useful to use local representations. However, the problem with local representations is that you
lose some of the virtues above, in particular graceful degradation. If there is just one unit whose activation represents my
grandmother, then if I lose that neuron I lose my whole memory of my grandmother. But the empirical evidence suggests that
losing a single neuron will not lead to a person’s losing an entire memory. So, even if some artificial neural networks use localist
schemes to illustrate certain concepts, biological neural networks don’t seem to.

CHAPTER 1. INTRODUCTION 17

Figure 1.8: Localist representation

Figure 1.9: Distributed representation

For the most part, distributed representations are what one finds in the brain. Generally speaking,
brain functions are distributed over many neurons. Although it is harder to think directly about distributed
representations than about local representations, a whole conceptual framework has been developed for
addressing the problem. In fact, much of the book is about developing a mindset that allows you to think
about patterns of activation as points in a space (see in particular chapters 6 and 10). From that standpoint,
the 3 object detector learns how to detect clusters of points, similar “smells in smell space.”

Chapter 2

Applications of Neural Networks
Jeff Yoshimi, Zoë Tosi

In this chapter we consider how neural networks as models are applied in various areas of engineering and
science, with an emphasis on applications to cognitive science, given the scope of the book. One fascinating
feature of applications of neural networks, especially in recent years, is how a model that was initially
designed for one purpose takes on a completely different meaning in another context. For example, neural
networks that were initially used to study the visual system ended up being useful to engineers designing
pattern recognition devices. Those pattern recognition devices then became interesting to scientists studying
vision. ChatGPT and similar models were designed to provide a useful natural language interfaces (and to
support other features like machine translation), but they perform so well that they have become objects of
interest for scientists and theorists.1

2.1 Engineering vs. Scientific applications

In practice, neural networks are applied in two main ways: (1) as engineering tools, and (2) as scientific
models.2

When neural networks are used as engineering tools, they are used to do useful things, like recognize
faces in photographs or convert speech to text. Neural networks used for engineering do not have to be
psychologically or neurally realistic, they just have to work well. In fact, it is preferable if they are better
than humans, making fewer mistakes than we do.

Figure 2.1: A taxonomy of types of neural network research, which serves as a guide to this section. En-
gineering uses (section 2.2) where the goal is to just make something useful, and scientific models where
the goal is use neural networks to model the mind (connectionism, section 2.4), the brain (computational
neuroscience, section 2.3), or both (computational cognitive neuroscience, section 2.5).

1It’s a strange situation: systems designed by humans are not completely understood by the people who designed them, and
so they have become topics of scientific and philosophical inquiry.

2See the discussion of “standards of intelligence” in [115]. Models of idealized intelligence are what we are calling “engi-
neering” models here, while psychologically realistic cognitive models are what we are calling “neural networks as scientific
models.”

18

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 19

Neural networks used for scientific modeling should be neurally or psychologically realistic; they should
accurately describe how the brain and the mind work. A neural network model of human memory, for
example, should remember (and forget) things in the same way humans do in experiments. This second use
of neural networks–as models of the mind and brain–itself subdivides into several subcategories, depending
on what specifically is being simulated. Neural networks are sometimes used to understand the brain (in the
field of “computational neuroscience”), sometimes to understand mind and behavior (this is sometimes called
“connectionism”), and sometimes to understand both brain and mind simultaneously. A map of these types
of research is in figure 2.1. As we will see, this taxonomy is not always so neat, and there are fascinating
cases of, for example, engineering neural networks becoming objects of scientific interest.

A good rule of thumb when considering how to classify a neural network model is to ask: “What is the
neural network being used for? As a tool that does something useful, or as a scientific model?”3 Even then
it can be tricky. For example, consider the following title of a journal article: “Use of Neural Networks in
Brain SPECT to Diagnose Alzheimer’s Disease” [121]. At first, this sounds like it might be scientific model,
since it mentions the brain and Alzheimer’s. However, the article is actually about how neural networks can
be used to determine whether a person has Alzheimer’s. The neural network is not being used as a model of
the brain or any cognitive processes, but rather as an engineering tool to help diagnose Alzheimer’s disease
based on brain images. If we ask: “What is the neural network they made being used for?”, the answer is
to build a better diagnostic tool for Alzheimers. The network is not being used a model of Alzheimers. So
it’s really an engineering usage of a neural network, rather than a scientific model.

2.2 Engineering uses of neural networks

Neural networks in engineering are tools to solve problems. They are used as classifiers, controllers, signal
processors and other components, alongside many other types of engineering tools. In fact, in the con-
temporary world, many things we take for granted are built on top of neural networks engineered to do
useful things. They are at the heart of the current revolution in AI (as of 2023). They recognize voice
and images, they generate speech, the generate images and movies, they drive cars, and of course, they can
have human-like conversations with us (as with large language models like ChatGPT). They do many of the
things humans do, often better than we can, because we can carefully engineer them and train them on such
massive datasets.

We will see in later chapters how to systematically classify these different kinds of models, but for now we
can focus on a very common case: the use of neural networks to classify objects, which is one application of
machine learning. Classifiers are good at finding patterns in complex and noisy data. Remember, neural
networks are trained, not programmed, making them well suited to tasks where there is no obvious way to
mathematically determine the relationship between a set of inputs and a set of outputs.

Figure 2.2: Left: Sample inputs to the knot classification network. Right: The knot classification system.
The neural network is labelled “MLP.”

Here is an example from the late 1990s. A lumber yard in Finland had to classify pieces of wood,
identifying 30 different kinds of knot in images of lumber. Some examples are shown on the left side of

3A more advanced way to ask this question is to ask: how are the node activations and weight strengths being interpreted?
Are they merely parameters in statistical models, or are they supposed to capture something real about neurons, or about
concepts and their relations?

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 20

figure 2.2. A human can classify these knots, but it is time-consuming, expensive, and error-prone (look
at how subtle some of the differences are between the different “dry knots”). It is also hard to program
a computer to classify these knots according to explicit rules. Thus, neural networks were used, and they
outperformed humans. A neural network trained on samples like the one shown have about 90% accuracy in
this process, compared with 70-80% accuracy for humans. The neural network is shown in the figure. It is
buried inside the system, the “MLP classifier” towards the right (“MLP” means “multi-layer-perceptron,”
which is a feed-forward network trained by backpropogation. It is similar to the 3-object detector above).
This system takes a picture of a piece of wood, does some pre-processing on the resulting pixel image, and
then summarizes features and colors of that image as a list of numbers, which is fed to the neural network
as input. The neural network transforms these numbers into another list of numbers, which describe how
decayed, burnt, dry, round, and so forth each sample is. This is a feature vector. This feature vector can
then be used to classify the knot [66].4

2.3 Computational neuroscience

We now turn from neural networks used as engineering tools, to neural networks used as models of the mind
and brain.

Computational neuroscience uses computational methods to answer questions related to neuroscience.
Computational neuroscience spans many levels, from the micro-scale of cell membranes to the macro-scale of
the human brain as a whole (see Fig. 2.3). It is a highly multidisciplinary field, encompassing biology, neuro-
science, psychopharmacology, cognitive science, complexity science, psychology, and even physics, depending
on the context.

Figure 2.3: Micro, meso, and macro-level models in computational neuroscience. Left: micro-level models of
individual neurons. Middle: meso-level model of a network of several thousand neurons. Right: macro-level
model of neuronal connections spread out through the entire brain.

Micro-scale models in computational neuroscience study individual neurons or even individual parts of
neurons, like the receptors that are studded in the cell membrane to let charged particles in and out of a cell
(these are models of “receptor kinetics”). Models at this level often study the details of how charge flows
through the tree-like structures of a neuron’s dendrites and axons, and can accurately describe the behavior
of individual neurons in a laboratory dish (“in vitro”) when they are injected with current from small
electrodes. Models at this level often attempt to answer questions that are physiological or pharmacological
in nature like the effect of neuromodulators on the low level dynamics of a neuron, or how new receptors are

4Pre-processing is one aspect of data wrangling, which is discussed in chapter 7. Post-processing also occurs, for example all
things that happen in ChatGPT after the network produces its raw output (for example filtering out inappropriate responses).

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 21

created or new dendritic spines are grown. These models are largely below the level of what is visible in a
single Simbrain node.

Macro-scale models in computational neuroscience describe the behavior of large groups of thousands to
millions of neurons and the connections between them. Oftentimes these models approximate the activity of
thousands of neurons or even whole brain areas as the activity of a single higher level node.5 These models
can accurately describe the spatio-temporal organization of patterns of neural activity measured using brain
imaging techniques like fMRI. In a Simbrain network simulation of this kind each node would represent the
aggregate activity of thousands to millions of neurons and the whole network could represent the behavior
of the entire brain. Models of this type are usually concerned with questions which are psychological or
behavioral in nature. For instance the functional relationships between brain regions have been shown to
be different in patients with schizophrenia resulting in a different overall graph structure of the functional
connectivity between brain regions [23]. Often work at this level “bleeds over” into the realm of general
neuroscience.

In this book we mostly focus on the meso-scale (or “middle”-scale) of computational neuroscience, be-
tween the micro and macro-levels. Whereas micro-scale models focus on individual neurons or their parts,
meso-scale models focus on networks of hundreds to thousands (or more) of interconnected neurons. And
whereas each node in a macro-level model approximates the activity of large group of real neurons, each of
the simulated neurons in a meso-level simulation corresponds to a real neuron. Thus, a meso-level simulation
containing 1000 artificial neurons is a direct simulation of a biological neural network containing 1000 real
neurons. The emphasis is on discerning governing principles and dynamical phenomena associated with
these networks. Meso-level models in computational neuroscience have been implemented in Simbrain (e.g.
the middle image in Fig. 2.3).

The model neurons and synapses used in these simulations are more complex than the simple nodes
and weights described above in Sect. 1.1, since they are designed to mimic the electrochemical properties
of real nerve cells. Most neuron models in computational neuroscience are governed by equations acting
on variables which represent specific electrochemical attributes of living neurons. Synapses have temporal
delays and their signals have duration. Network models in computational neuroscience tend to be comprised
of spiking neurons (neuron models which produce and propagate signals via action potentials) embedded in
complex recurrent networks. We cover the special properties of these model neurons and networks in chapter
19.6

Very roughly, the focus of computational neuroscience at these three scales can be thought of as follows:
Neuron Dynamics → Network Dynamics → Brain Dynamics

2.4 Connectionism

The use of neural networks as cognitive models, which behave in the same way humans and animals do, but
without concern for neural realism, is sometimes called connectionism.7 In connectionist models, there is
no direct effort to understand the brain. The focus is on modeling some aspect of human or animal behavior
using nodes and weights. Such models are usually meant to suggest how a given task is accomplished by the
brain—they are “neurally plausible”—but they do not directly model the underlying neuroscience.

As an example, consider the “IAC” or “Interactive Activation and Competition” network. A famous
example of an IAC network is McClelland’s model of knowledge of two fictional 1950s gangs, the Jets and

5As an example, see https://www.ncbi.nlm.nih.gov/pubmed/21511044 [26]
6In contrast to the micro-scale, which is (broadly) concerned with physiology, and the macro scale, which is often concerned

with psychology, the meso-scale concerns itself with questions like: How do networks of interconnected neurons represent
information? Can we replicate synaptic connectivity using plasticity rules? How does information processing emerge from
the interactions of neurons embedded in a neural network?’ Meso-scale models often attempt to understand formalisms that
describe observations of groups of neurons (e.g. slices of brain tissue) with explanations of those observations using models
of detailed low level processes at the micro-scale. It is known that when neurons fire in particular temporal sequences the
synapses connecting them will become stronger or weaker depending upon that sequence. A micro-scale model might concern
itself with how new receptors are created, or new spines are grown. A meso-scale model will only concern itself with the function
translating that temporal sequence into a change in synaptic strength.

7Not everyone using the term “connectionism” in this way, but it is a fairly standard usage. A more precise phrase would
be “connectionist model of a cognitive process”.

https://www.ncbi.nlm.nih.gov/pubmed/21511044

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 22

Sharks from West Side Story [97].8

Figure 2.4: A fragment of the Jets and Sharks model. Nodes in this model don’t represent neural activity,
but activation of concepts in semantic memory.

An IAC model is organized into pools of nodes. In Fig. 2.4, there are 7 pools of nodes. These pools
of nodes are used to model the internal concepts of a person who knows about these two gangs. The
pools represent different traits: age, education level, marital status, job, etc. The central pool is a pool
of “instance nodes” or “object nodes”, shown as black disks, which correspond to individual people. Each
person is associated with a node. The other pools correspond to properties of these people: their name,
job, age, and gang affiliation. The nodes in each pool inhibit each other, which produces a winner-take-all
structure. As the simulation runs, the activation of one node in each pool will tend to dominate the others.
Notice that the topology of this network is recurrent, and as a result the network has dynamics: when we
run it, activation starts to spread from one node to another over time. In fact, these have also been called
spreading activation networks [97].

The IAC network models general features of human semantic memory, like the ability to retrieve attributes
of a person based on their name. If the Lance node is activated and the simulation is run, activation will
spread through the recurrent network, and after a while the Jets node, 20s node, Junior high education node,
and burglar node will have the highest activations. This is like asking “Tell me about Lance?” and being
told about him. The network can also model our ability to describe the properties of a group of people. If
the Jets node is activated and the network is run, the standard characteristics of the Jets will light up: they
tend to be in their 20s, with a junior high school education, and single. This is like asking “Tell me about
the Jets?” and being told about that group. The network can also model our ability to identify people who
match a specific description. If the 20s node and the junior-high education node are activated, then the
name nodes for Lance, Jim, John, and George all light up. This is like asking “Who is in their 20s with a
junior high education?” and being told “Well, that could be Lance, Jim, John, or George.”

Though IAC networks are models of semantic memory, and are brain-like (spreading activation and
winner-take-all types of dynamics do occur in the brain), they are not models of the brain, they do not
capture any details of human neuroscience, or have nodes whose activation corresponds to activity in specific
parts of the brain.

The IAC network is a qualitative model of human memory. Other connectionist simulations are more
quantitative. For example, Seidenberg and McClelland modeled childrens’ reaction times in reading words
aloud. The network is a variant on a feed-forward network, similar to the network on the left side of
figure 1.3. It has more nodes: 400 input units, which represent written words, and 460 output units, which
represent spoken words. It was trained to pronounce all one-syllable words in English using a method
called “backpropogation” (chapter 12). This simulation models the word frequency effect. Words that occur

8For a video overview of this network in Simbrain, see https://www.youtube.com/watch?v=Nw3TEDfugLs.

https://www.youtube.com/watch?v=Nw3TEDfugLs

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 23

Figure 2.5: Data associated with Seidenberg and McClelland (1989)’s reading model. Human data are on
the left, neural network data are on the right. Humans pronounce high frequency words more quickly than
low-frequency words. The neural network makes fewer errors on high frequency than low-frequency words.

frequently in language (like “the”) are pronounced more quickly than words that occur infrequently (like
“rake”).

Human data showing this effect are on the left side of Fig. 2.5. Humans pronounce high frequency words
more quickly than low frequency words (the y-axis shows latency, or length of time to pronounce the word;
lower values mean faster times). The neural network data on the right was generated by counting how many
mistakes the network made for low and high frequency words [143]. When you line the two graphs up next
to each other, they look the same. This suggests that the way the model reads is similar to the way humans
read: both the neural network model and humans are better at reading more common words.

2.5 Computational Cognitive Neuroscience

For neural network used as scientific models, it can be hard to say whether it simulates the brain (compu-
tational neuroscience), or cognition (connectionism). Many models aim to do both at once. That is, many
people who use neural network models are interested in both how the brain works and how cognition works,
and of course, how the two are related. Thus, there are increasingly many models that attempt to capture
both neural and psychological data, as was noted in the discussion of macro-level computational neuroscience
above.

We will refer to these as computational cognitive neuroscience models, and define them as models
that attempt to capture psychological and behavioral data while simultaneously paying attention to neural
details. This type of model captures various aspects of cognition (e.g. visual attention, semantic and episodic
memory, priming, familiarity, and cognitive control), using groups of neurons that are explicitly associated
with specific brain circuits. Many researchers hope that over time computer models of brain and behavior
will converge, and that future models will increasingly capture both neural and behavioral data, and thereby
reveal how the dynamics of the brain give rise to the dynamics of cognition.9 Some examples of this type of
model are shown in figure 2.6.

From this standpoint, computational neuroscience and connectionism are two ends of a continuum or
spectrum. We have computational neuroscience at one end, and connectionism at the other. All through
the middle of this spectrum are models that try to model both biological data and psychological data at the
same time. The goal is to understand how the circuits of the brain produce all the wealth and complexity
of observable human and animal behavior.

9Examples of researchers and research groups working in this area include the work of Randy O’Reilly and his col-
leagues (https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Main), Stephen Grossberg’s work which began in the
1960s (https://en.wikipedia.org/wiki/Stephen_Grossberg), and the work of Chris Eliasmith and his colleagues (https:
//uwaterloo.ca/centre-for-theoretical-neuroscience/people-profiles/chris-eliasmith). There is also a burgeoning
research community organized around the computational cognitive neuroscience conference (here is their 2024 program:
https://2024.ccneuro.org/).

https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Main
https://en.wikipedia.org/wiki/Stephen_Grossberg
https://uwaterloo.ca/centre-for-theoretical-neuroscience/people-profiles/chris-eliasmith
https://uwaterloo.ca/centre-for-theoretical-neuroscience/people-profiles/chris-eliasmith
https://2024.ccneuro.org/

CHAPTER 2. APPLICATIONS OF NEURAL NETWORKS 24

Figure 2.6: (Left) An Emergent simulation of visual processing, with labels indicating which brain areas each
group of nodes represents. (Right) A Nengo simulation of the human ability to retrace a visually perceived
number.

2.6 From science to engineering and from engineering to science

Some neural networks that originated as scientific models later informed the development of engineering
tools. Conversely, sometimes an engineering tool ends up being useful as a scientific model. These are
interesting historical dynamics. A prominent example are LLMs like ChatGPT. They originated as pure
engineering, something useful. But now they have become an intense topic of scientific interest as linguists,
cognitive scientists, philosophers and others ask to what extent they can tell us about human cognition (see
section 17.5).

Deep networks provide a good example of these back and forths. Deep neural networks were originally
used as scientific models of vision in the 1970s (see chapters 3 and 4). These early neural network models
of vision turned out to be excellent tools for pattern recognition, a common engineering application, for
example recognizing digits on an envelope. This is part of what led to the deep learning revolution of the
2010s. So we had a shift from science to engineering. But then it happened again, in the reverse direction.
These new and improved deep networks turned out to be useful in computational neuroscience as a way to
understand the human visual system. So, a neural network that started off in science, then got used for
engineering, and then later that tool got adapted back to science!

Similar twists and turns from engineering to science are happening now with the emergence of large
language models like ChatGPT. They originated as pure engineering models, that are meant to facilitate
natural language processing. I think we can all agree that ChatGPT is useful, whether or not it “thinks like
a human.” But it’s so compelling as a model, that linguists, psychologists, and philosophers are starting to
study them as cognitive models. See Chapter 16. So in this case a model that started off in engineering
subsequently became an object of scientific study.

Chapter 3

History of Neural Networks
Jeff Yoshimi, Pierre Beckmann

This chapter briefly outlines the history of neural networks, including the pre-history of neural networks
and cognitive science extending back to ancient Egypt. The theory of neural networks has many historical
precedents, but emerged as an explicit mathematical and computational formalism in the mid 1900s, via the
work of McCulloch and Pitts. The main events developed in the chapter are shown in Fig. 3.1.

Figure 3.1: A timeline of the history of neural networks. The main history of neural networks runs from the
mid 1940s to the present. We also consider some of the pre-history of neural networks, i.e. historical figures
who linked the structure and dynamics of the mind with the structure and dynamics of the brain.

3.1 Pre-history

Cognitive science, the interdisciplinary study of mind, has ancient roots. Documentation of the idea that
the brain plays some role in controlling behavior goes back to an Egyptian papyrus that is over 3000 years
old.1 Hieroglyphics from the papyrus describing the gyrations of the brain are shown in Fig. 3.2.

In Western philosophy and science, Plato, Aristotle, and other Greek philosophers had an interest in the
structure of the human mind (or “soul”) in relation to physical processes in the body.2 Plato and Aristotle

1The papyrus can be viewed online; try searching for “Smith papyrus”. Recent scholarship on the papyrus is collected in
[101].

2I focus on Western roots of neural network theory, though there were precedents in other parts of the world, which I hope
to add in future versions of this chapter. Currently, the literature is sparse. There is an expanding literature on the history of
science globally (e.g [146]), but there is not (as of 2017) much scholarship on the history of neuroscience, cognitive science, or
psychology in Africa, Asia, India, Mesoamerica, the Middle East, and other regions whose historical documents contain relevant

25

CHAPTER 3. HISTORY OF NEURAL NETWORKS 26

Figure 3.2: Hieroglyphics describing the sulci and gyri of the brain.

both described the soul as a set of interacting faculties (in Plato: reason, spirit, and appetite), and both
speculated about its physical basis. They disagreed about whether the brain or heart is the physical basis
of the soul (Aristotle thought the brain just cooled the blood), but by the end of the Classical period the
dispute was resolved in favor of the brain [44].

In the Medieval period, priests, physicians, and natural philosophers throughout Europe and the Middle
East discussed cognition in relation to the brain. Cognition was thought to be based on the play of “spirits”
or vapors in the ventricles of the brain [44]. Spirits originating in the senses were combined in the “common
sense” and then purified, and mixed in higher ventricles. A typical diagram from the period is shown in
figure 3.3. The ventricles are now believed to be shock-absorbers and chemical reservoirs. They are not
thought to play a central functional role in cognition. However, the idea that sensory inputs to the brain
are combined and refined in various ways persists in connectionist models.

Figure 3.3: A medieval diagram which shows how spirits were thought to flow and combine through the
ventricles of the brain. Different ventricles were associated with different faculties, such as sensation and the
“common sense,” integrating different senses, imagination, memory, and reason.

During the Enlightenment, many speculated that connections between ideas in the mind are based on
connections between fibers in the brain (neurons had not yet been identified as distinct structures.)3 In
the 1700s, the empiricists Locke, Berkeley, and Hume famously claimed that ideas in the mind result from
associations between simple sensory ideas: for example, a percept of an apple is composed out simple
sensations corresponding to its color, shape, smell, and taste. One idea comes to mind, it calls another to
mind, etc. Sometimes this happens instantaneously, as in the apple percept, but in other cases it might unfold
in a temporal progression. Someone mentions apples, and that might make you think of fiber, which might
in turn make you think of Raisin Bran. If someone mentions a person you know, associated thoughts about
them–their age, where they live, their occupation, physical appearance, etc.–might also come to mind. One
idea comes to mind, it calls another to mind, etc. Thus, the empiricists thought of the mind as something
like an Interactive Activation and Competition (IAC) network (cf. Chapter 1) [8].

In this period, David Hartley argued that the empiricist theory of associations could be explained by

information. There is however, some literature on Arabic and Islamic roots of neuroscience [110].
3For more on this period of history, see Sutton (1998) [152]. Sutton’s discussion of Descartes is especially interesting, since

it shows how Descartes had a connectionist styled account of the brain, which on his view interacts with a non-physical soul
via patterns of activity at the pineal gland. Other mechanist philosophers of the period such as Hobbes and La Mettrie had
similar accounts but rejected the assumption of a non-physical soul.

CHAPTER 3. HISTORY OF NEURAL NETWORKS 27

laws governing connected neurons [63, 8]. For example, Hartley [62] proposed that sensations A,B,C, ...
which are associated with each other, are associated because of correlated associations between “vibrations”
of brain fibers:

PROPOSITION 10: Any sensations A,B,C, etc., by being associated with one another a
sufficient number of times get such a power over the corresponding ideas a, b, c etc., that any one
of the sensations A, when impressed alone, shall be able to excite in the mind b, c, etc., the ideas
of the rest.

PROPOSITION 11: Any vibrations A,B,C, etc., by being associated with one another a
sufficient number of times get such a power over the corresponding miniature vibrations a, b, c
etc., that any one of the vibrations A, when excited alone, shall be able to excite in the mind
b, c, etc.

He proposed proposition 11 as a neural explanation of proposition 10, which is psychological. Note that
proposition 11 is an early version of what would later became known as Hebb’s rule or Hebbian learning
(“neurons that fire together, wire together”), discussed below and in chapter 9.

Later, in the 19th century, Bain illustrated these ideas with images that look strikingly like modern
neural network diagrams, as in Fig. 3.4.

Figure 3.4: From Bain’s 1873 book Mind and Body, which opens with the question “What has Mind to do
with brain substance, white and grey”?

The notion that associations between thoughts and memories are based on neural connections in the brain
was further developed in late 1800s by Sigmund Freud, who developed a psychodynamic theory, according
to which psychical “energies” are based on the flow of activations in the neural networks of the brain. His
goal was to show how psychology could become a natural science by representing “psychical processes as
quantitatively determined states of specifiable material particles” [49, p. 355]. But whereas earlier theorists
had simply speculated about associative processes, he based his on actual clinical observations, and in
particular observations of (allegedly) neurotic patients experiencing “excessively intense ideas.” He explained
his clinical observations in terms of “neuronic excitation” understood as “quantities in a condition of flow”
(p. 356). Fig. 3.5 shows part of an image from this early book, which describes a patient (Emma Eckstein,
who went on to become a famous author) who avoided shops based on an earlier traumatic experience. The
specifics of the account are dubious, and Freud himself gave up on the project of a direct neural account of
psychological processes, but it does show that Freud was thinking about the mind in a broadly connectionist
way.

Many other psychologists, neuroscientists, and philosophers in the late 19th and early 20th century
contributed to the general idea that psychological processes are rooted in neural processes. Helmholtz,
Mach, Ramón y Cajal, Golgi, and others advanced biological psychology in various ways (see, e.g., [18]),
e.g. by establishing that neurons are individual cells, and by applying mathematical methods to psychology
and neuroscience. In Russia, the psychologists Luria and Pavlov sought to understand the neural basis
of associative learning, speech pathology, and other cognitive phenomena in a quantitative, experimentally
tractable way.4

4On Luria in relation to the history of neural networks, see [136, p. 41].

CHAPTER 3. HISTORY OF NEURAL NETWORKS 28

Figure 3.5: An image from Freud’s early Project for a Scientific Psychology. The open circles are conscious
ideas; the dark circles are unconscious ideas.

3.2 Birth of Neural Networks

We now turn to the history of neural networks proper, i.e. explicit formal descriptions of artificial neural
networks, which could be implemented in computer programs.5

The first wave of research into neural networks occurred in the 1940s, via an array of neuroscientists,
mathematicians, logicians, and engineers, many of them at MIT.6 The history is complex, fascinating,
and brimming with colorful personalities (see the early chapters of [6]). This was the period when digital
computers were first being developed by people like John von Neumann, a child prodigy who later established
a computer architecture still in use today (the “von Neumann architecture” [159]). The architecture involves
a separation between memory and a central processing unit that retrieves data from memory and operates
on it using logical rules.

Neuroscience had also been steadily advancing in this period, and the network structure of the brain
and its relation to behavior were better understood. The field of control theory was emerging via the work
of Norbert Wiener, another child prodigy. He developed the field of “cybernetics” (which is closely related
to modern control theory), and defined it as “the science of control and communication in the animal and
the machine” [166, p. 16]. In the late 1930s, the petroleum industry had developed central control systems
to maintain refinery towers, and in WWII feedback systems were used to control anti-aircraft guns. A key
idea in cybernetics was that these feedback circuits could coordinate complex movement, both in engineered
systems and in the brain.

In this atmosphere, two scientists emerged as the “fathers of neural network theory”: Warren McCulloch
(a neurophysiologist affiliated with cybernetics) and Walter Pitts (a logician).7 They wrote a famous paper
showing how neuron-like elements could perform all the logical operations performed by computers. This
in turn implies that whatever can be done on a computer can, in principle, be done using neurons [99].
A diagram from McCulloch and Pitt’s famous paper, A Logical Calculus of Ideas Immanent in Nervous

5The history of neural network research from this point forward is covered in several places. Fausett has a 4 page overview
that covers the main points nicely: [42, pp. 22-26]. Levine, ch. 2 is especially detailed on McCulloch,s Pitts and Rosenblatt [88].
A brief online history is at http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/.
A more recent history that extends to present day work in deep learning is at https://www.skynettoday.com/overviews/

neural-net-history. A comprehensive discussion that is highly attentive to historical details often overlooked by others is
Schmidhuber’s “Deep Learning: Our Miraculous Year 1990-1991” [139] (don’t let the title fool you, it considers earlier work).
See https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html. Also see the end of chapter 1 of
the first PDP chapter, [136], and Haykin (2nd Ed.) section 1.9 [64]. My favorite source is a series of interviews of leading figures
in the history of neural networks collected in Talking Nets, [6].

6Important research relating to neural networks did occur earlier in the 20th century, e.g. work by Thorndike, Lashley, and
Clark Hull. Hull’s writings contain diagrams and formulas describing associative learning processes based on rat studies that
look very much like connectionist networks (e.g. http://psychclassics.yorku.ca/Hull/Hierarchy/part1.htm).

7Both had vivid personalities. McCulloch had wild hair and charisma. Pitts was a quiet introvert who had trouble getting
a regular job, but who was regarded by his associates as a genius and was supported by McCulloch for many years. For a
fascinating first-hand account of their personalities see the interviews with Lettvin, Cowan, and Arbib in [6]. See in particular
pages 9, 101, 104, 218, 223. Video interviews with McCulloch are available online.

http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/History/
https://www.skynettoday.com/overviews/neural-net-history
https://www.skynettoday.com/overviews/neural-net-history
https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html
http://psychclassics.yorku.ca/Hull/Hierarchy/part1.htm

CHAPTER 3. HISTORY OF NEURAL NETWORKS 29

Activity, is shown in figure 3.6.8 In appendix A, a demonstration of a similar approach to building logic
gates using neural networks (in Simbrain) is developed.

Figure 3.6: From the end of McCulloch and Pitt’s famous article, in which they demonstrate that “for any
logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes.”
In these networks, what are today called “weight strengths” or “synaptic efficacy” correspond to number
of connections. Nodes only fire if two or more incoming connections are activated. “Lasso” connections
correspond to what are today called “inhibitory” connections. In these networks, a single activated lasso
connection will disable the node it is connected to. A network computing logical or is shown in panel B (it
will fire if either of the inputs nodes connected to it fires) and a network computing logical and is shown in
panel C (it only fires if both input nodes connected to it fire). Panel E models the heat illusion (briefly held
cold objects can feel hot). For an elaboration of this case see [126].

McCulloch and Pitts used what are now called binary units or threshold units (see chapter 5): nodes that
are only activated when their summed inputs are above a certain value. Nodes could only be active at a level of
0 or 1, based on the “all or none” property of neurons (cf. 4). They made some assumptions that are unusual
by today’s standards. For example they assumed that a single inhibitory input is sufficient to completely
prevent a neuron from firing. More importantly, they did not describe connections between neurons using
variable-strength weights. Their networks used fixed connections, which could not be adjusted using a
learning rule. Learning rules would later become a primary focus of neural network theorists. Nonetheless,
it was the first time an actual formal model of a neuron was presented, together with a serious effort to
understand how networks of neurons could produce complex behaviors.

3.3 The Cognitive Revolution

In the 1950s advances in linguistics, early computer science, neuroscience, and psychology, among others,
coalesced in a broad reaction to earlier approaches to psychology, which had focused on observable behavioral
data. The earlier behaviorists had frowned upon discussions of internal processing between sensory inputs
and motor outputs, and treated the mind as a kind of black box. The emerging cognitive scientists wanted
to break open that black box and look inside: they wanted to understand what kind of processing occurs
between sensory input and motor output in terms of computation. The big idea that got everyone excited
was that inside the mind there is an information processing system, one similar to the computer systems that
were just then beginning to be realized on a large scale. This was sometimes referred to as the “cognitive
revolution” in psychology.9

In the early cognitive revolution many different kinds of cognitive model were considered, including
early neural networks like the Perceptron, discussed next. However, from early on there were doubts about

8See Levine, p. 12, for a useful summary of how McCulloch / Pitts networks operate [88].
9An excellent overview and history of the era is [7].

CHAPTER 3. HISTORY OF NEURAL NETWORKS 30

neural networks. There were, for example, concerns that statistical approaches were fundamentally limited,
a concern most famously posed by Minsky and Papert (see chapter 13). Others, were concerned that neural
networks could not store and manipulate context-free symbols to use in reasoning [47], and there was also
a worry that human-like language and reasoning could not be learned from the input stream used to train
a neural network (“poverty of the stimulus” arguments [13]). A competing approach to modeling cognition
that avoided these problems was the symbolic approach—it goes by various names, including “Symbolic AI”
and “Classical AI”–according to which cognition involves manipulating symbols in accordance with rules
(see section 1.2.3).

Over time, a kind of war broke out between these groups (brewing in the 1950s and peaking in the 1980s).
The connectionists had responded to the concerns raised by the symbolic AI camp, building networks that
attempted to do all the things that symbolic AI advocates said they couldn’t. The symbolic AI camp
responded with doubts about these efforts, and for a time the “framework wars” were at the center of
cognitive science. Today there are other camps as well, and some who mix ideas from both symbolic AI and
connectionism. To jump ahead briefly, with the advent of large language models that produce convincing
natural language, many feel that the Symbolic AI-connectionism war has been settled in connectionism’s
favor, and indeed as noted in the introduction today “AI” is often used to refer to neural networks. But the
symbolic approach has fought back against this, and in some sense the old debate has been rekindled (see
section 17.5.4).

Here are some themes in early cognitive science that prefigure connectionism. The Canadian psychologist
and neuroscientist Donald Hebb formulated his famous learning rule for weights, the “Hebb rule” (“neurons
that fire together, wire together”) [65] (cf. the discussion of Hartley above).10 Hebb also described the
operation of the brain in terms of networks of connected neurons, formulating the concept of a “cell assembly”,
a group of neurons that becomes associated over time and thereafter tend to collectively reverberate in
response to a stimulus (Fig. 3.7 shows one of Hebb’s own diagrams of a cell assembly) [65]. The concept of
a specific, learned pattern of brain activity produced by a stimulus remains important today.11

Figure 3.7: A Hebbian cell assembly. These neurons initially fired together, and then got wired together,
and so they will tend to fire together in the future.

Another important figure in the period was the psychologist Oliver Selfridge, who pioneered the idea
that psychological processes can be broken down into interacting sub-processes. His “Pandemonium” theory
described the mind as a collection of “demons”, each of which takes care of one specific aspect of a task.
For example, figure 3.8 shows how Selfridge thought of the process of perceiving the letter “B”. As can be
seen the figure, the demons are basically nodes and the model is basically a feed forward network. An image

10See http://www.scholarpedia.org/article/Donald_Olding_Hebb. Also see Werbos’ interview in [6].
11See http://www.scholarpedia.org/article/Cell_assemblies. For a more up to date version of the idea cf. the concept

of a polychronous neural group or PNG, https://www.izhikevich.org/publications/spnet.htm.

http://www.scholarpedia.org/article/Donald_Olding_Hebb
http://www.scholarpedia.org/article/Cell_assemblies
https://www.izhikevich.org/publications/spnet.htm

CHAPTER 3. HISTORY OF NEURAL NETWORKS 31

Figure 3.8: Selfridge’s pandemonium model. Here the model is detecting the letter “B”. The solid lines
correspond to connections between active nodes, or “demons”.

arrives at the eye, line demons detect lines and curves in various orientations, those demons send messages
to the next layer of demons who detect combinations of lines and curves, etc. The process continues through
a network of demons until a decision demon says “B!” [145]. This is a striking anticipation of the concept of
a deep network for vision with layers of increasingly complex feature detectors (see chapter 14).

Other important research in this period was carried out by the psychiatrist and cyberneticist William
Ashby (who wrote Design for a Brain in 1952), Marvin Minsky (who wrote a dissertation on neural networks
on 1954), and Dennis Gabor (a Nobel laureate who worked on holograms, and introduced a standard method
for translating visual stimuli into a numeric form, that can be processed by neural networks).

3.4 The Age of the Perceptron

The types of layered feed-forward networks that are typically used today were first studied in detail in the
1950s and 1960s, primarily via the work of Frank Rosenblatt and Bernie Widrow (both published seminal
papers in the late 1950s and early 1960s; see [165]).12 Rosenblatt called his network the “Perceptron” and
Widrow called his an “Adaline”. Both had a single layer of adjustable weights, threshold output units, and
learned using an error function (see chapter 12).Thus both networks moved beyond McCulloch and Pitt’s
networks—which did not involve any learning, just hand-crafted connections—to networks that actually
learned from experience. This is, of course, what is distinctive about modern neural networks.

Rosenblatt was a psychologist interested in human and animal behavior and its neural basis.13 He studied
feed-forward networks with one layer of fixed weights and another layer of adjustable weights that could be
trained to classify images on small displays as, for example, triangle vs. square, or male vs. female. He
implemented his networks using huge tangles of wires for synaptic links (see Fig. 3.9). This was quite
impressive at the time and got a considerable amount of press.14 His rule was an early form of supervised
learning rule based on a few if-then rules: if a sample is misclassified, then if output was too high, strengthen
the weights, otherwise weaken the weights. Rosenblatt proved that perceptrons could find solutions to certain
types of classification tasks in a finite time [134].15 Haykin, who refers to this as the “classical period of the
perceptron”, summarizes Rosenblatt’s importance as follows:

The perceptron occupies a special place in the historical development of neural networks: It

12A concise summary of this period of history is in Bishop p. 98 [15]. Also see [165].
13As with McCulloch and Pitts, Rosenblatt’s personal history is fascinating, and in some ways tragic. See the Cowan and

Hecht-Nielson interviews in Talking Nets [6].
14See https://www.youtube.com/watch?v=cNxadbrN_aI
15This is known as the “perceptron convergence theorem.” For an intuitive discussion see https://www.cs.cornell.edu/

courses/cs4780/2018fa/lectures/lecturenote03.html.

https://www.youtube.com/watch?v=cNxadbrN_aI
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html
https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote03.html

CHAPTER 3. HISTORY OF NEURAL NETWORKS 32

Figure 3.9: Rosenblatt with one of his hardware implementations of a perceptron (left) and another view of
the perceptron (right).

was the first algorithmically described neural network. Its invention by Rosenblatt, a psychologist,
inspired engineers, physicists, and mathematicians alike to devote their research effort to different
aspects of neural networks in the 1960s and the 1970s. Moreover, it is truly remarkable to find that
the perceptron... is as valid today as it was in 1958 when Rosenblatt’s paper on the perceptron
was first published.

Whereas Rosenblatt focused on psychological implications of the perceptron, Widrow and his colleagues
had engineering applications in mind, like adaptive noise cancelling in telephone wires.16 In the hardware
implementation shown in Fig. 3.10, the toggle switches control input node activations, the knobs control
weight strengths, and the dial shows the activation of an output node.17

The least mean squares rule or LMS is discussed in section 13.1. Whereas Rosenblatt had derived his
if-then rule from his understanding of biology, LMS was derived from calculus using first principles, which is
how most modern learning rules are also derived. The essence of the rule is that we change each weight by a
factor corresponding to the output error times the input node activation. This produces a kind of Goldilocks
principle. When an output is too high (and the input is positive), we reduce the relevant weight so that the
output will be lower, and when an output is too low, we increase the relevant weight so that the output will
be higher. In this way the network zooms in on the right value, so that the output is just right. This is, in a
nutshell, the essence of how most modern neural networks work! Widrow can be seen using this rule to train
his machine to respond to T’s and J’s in variations positions in the video referenced in the figure caption.

3.5 The “Dark Ages”

Perceptrons and Adalines created a surge of interest in neural networks in the 1960s, but this was followed
by a period of relative quiescence in the 1970s and 1980s, during what have been called the “dark ages”,
“quiet years”, “drought”, and “winter” of neural networks.18 The dropoff in interest has been attributed
to several causes. A key part of the story was that networks with a single layer of adjustable weights were

16According to Widrow this technology is used in every modem in the world and is at the heart of the internet; see https:

//www.youtube.com/watch?v=skfNlwEbqck. Widrow also implemented his networks using a special electrical components called
a “memistor” which Widrow designed himself, which allowed weight updates in hardware. ALl of this is demonstrated in the
video.

17For Widrow’s personal recounting of the Adaline and its history, see his interview in Talking Nets [6]. Also see the videos
referenced in the figure caption, and the discussion in section 13.1

18See PDP vol 1, ch. 1 [136]; Haykin p. 43 [64]; Fausett p. 24 [42]. A variety of perspectives on the period are discussed in
Talking Nets. 110, 155, 254, 305, 371. Grossberg, Carpenter, Kohonen, Anderson and others active in this period have their
own interviews in Talking Nets [6].

https://www.youtube.com/watch?v=skfNlwEbqck
https://www.youtube.com/watch?v=skfNlwEbqck

CHAPTER 3. HISTORY OF NEURAL NETWORKS 33

Figure 3.10: A hardware implementation of Widrow and Hoff’s “Adaline” network, which Widrow called
the “knobby Adaline” on account of the prominent grid of knobs on the left, which control weight strengths,
and which were manually adjusted to implement their learning algorithm. Inputs were produced using the
12 toggle switches on the lower right (and displayed in the grid of small lights), and the resulting output
activation is displayed in the meter on the upper right. Videos of Widrow demonstrating the knobby Adaline,
back in the 60s and also more recently, are available at https://www.youtube.com/watch?v=skfNlwEbqck
and https://www.youtube.com/watch?v=IEFRtz68m-8&t=161s

shown by Minsky and Papert to suffer certain fundamental limitations [107] (see chapter 12). So it was
thought that neural networks weren’t powerful enough to do psychologically realistic things. Moreover, at
precisely that time more symbolic AI models were flourishing.

However, even if interest in neural networks waned for a time, especially in comparison to AI, neural
network research was active in this period. Relevant researchers include Kohonen, Amari, Fukushima,
Anderson, Sutton, Barto, Braitenberg, Schmidhuber, Grossberg, and Carpenter. These and others laid the
foundations for many of the ideas described in this book. So the dark years really weren’t that dark.19

3.6 First Resurgence: Backprop and The PDP Group

Connectionism came out of its (allegedly) dark decade and enjoyed a resurgence in the 1980s, for several
reasons. Prominent among these was the discovery of the backpropagation algorithm, which overcomes
the limitations associated with perceptrons. This makes it possible train networks with more than one
weight layer, which in turn allows them to solve more complex problems (for example, “linearly inseparable”
classification tasks; see chapter 12) by developing internal representations. A simple example of this is the
ability to train a network to solve the exclusive or (XOR) logic gate. McCulloch and Pitts neurons could
be hard-wired by hand to solve this problem, but no one could train a network automatically to solve it,
because it requires an additional layer of processing. This is easy to see in Simbrain: you can easily build an
XOR network by hand (appendix A), but try to use LMS to train a one weight layer network on the same
problem and the error will never go to 0.

The internal representations discovered in many-layered networks using backprop were shown to have im-
portant properties both for engineering applications and for psychological theories, as we will see throughout
the book.20

A related reason for this renewed interest—particularly among cognitive scientists—was the publication
of a major two-volume work in the period, Parallel Distributed Processing: Adventures in the Microstructure

19Debates about the status of neural networks in this period are covered in some detail in Talking Nets [6].
20In future iterations we hope to expand this section with a summary of some of the major work that began in this era,

primarily in connectionism, using neural networks to model psychological phenomena. As a first note in this direction, we refer
to the table at the end of this paper: https://link.springer.com/article/10.1007/s42113-020-00081-z/tables/1.

https://www.youtube.com/watch?v=skfNlwEbqck
https://www.youtube.com/watch?v=IEFRtz68m-8&t=161s
https://link.springer.com/article/10.1007/s42113-020-00081-z/tables/1

CHAPTER 3. HISTORY OF NEURAL NETWORKS 34

of Cognition, in 1986, by David Rumelhart, James MClelland, and the “PDP research group” (a group of
researchers, many of whom were at UC San Diego.) This publication brought connectionist networks back to
the forefront, by clearly articulating the connectionist standpoint, showcasing a number of models of various
aspects of cognition, demonstrating how to interpret the internal states and representations of neural network
models of cognition, and clarifying how connectionist networks differ from symbolic AI models [136]. John
Hopfield’s models of associative learning in recurrent networks (i.e. “Hopfield nets”, discussed in chapter
9) were also influential in this period, in part because Hopfield presented his work in an especially clear,
mathematically precise way.[68]21

3.7 Second Decline and Second Resurgence: Convolutional Net-
works

For a time (roughly the late 1990s through about 2010), neural networks declined in interest as attention
shifted to machine learning algorithms (cf. chapter 1). The problem was, in part, that tuning the parameters
of a neural network seemed more an art than a science, especially when compared with machine learning,
which is based on more tractable statistical principles. There was a sense that people just “twiddled” the
knobs of a simulation as best they could until they got decent performance out of their network. In 2010
(in the midst of this decline), Phillip Jannert said: “Neural networks were very popular for a while but have
recently fallen out of favor somewhat. One reason is that the calculations required are more complicated than
for other classifiers; another is that the whole concept is very ad hoc and lacks a solid theoretical grounding”
[71, Ch. 18]. There was a pervasive sense at the time that “...neural nets were janky and did not work very
well. They were seen as a hassle to work with—the computers were not fast enough, the algorithms were
not smart enough, and people were not happy” [81].

However, several things happened that brought attention back to neural networks. First, larger datasets
for training neural networks became available (what is sometimes referred to as “big data”). Second, higher
performance hardware for parallel neural network computing emerged, in particular using the graphical
processing units or GPUs on graphics cards (the kinds used to play modern graphics intensive video games)
and in proprietary hardware such as Google’s tensor processing units (TMUs).22 These breakthroughs
suddenly allowed for the deployment of much larger deep networks. They not only had more layers, but
relied on new, more complex, architectures.

Among these new architectures the most important were convolutional neural networks or CNNs (see
chapter 14), which comprise sequences of convolutional layers, a special kind of weight layer in which a single
set of shared weights is “scanned” over an input layer. Convolutional layers make it possible to effectively
train deep networks with many more than 3 node layers. CNNs led to an explosion of interest in deep
learning and deep networks. Rather than only dealing with vectors and matrices, these architectures began
to use more complex tensors (see 6.13), such as “volumes” of activation describing images, videos, and other
structures in rich detail. Whereas most neural networks through the 1990s had just three simple node layers,
CNN’s can have tens or hundreds of layers, many of them multi-dimensional arrays. Thus networks with
a great deal of representational width and representational depth could be developed (see section 1.1 and
chapter 14). These many-layered convolutional networks existed as far back as the 1970s (via Fukushima’s
neocognitron and related models), but it is only in the 2010s that a variety of technical hurdles relating to
this type of network were surmounted. Indeed some have described the period beginning around the 2010s
as a deep learning revolution, or as the decade of deep learning.23

21In Talking nets, on the PDP group, see pp. 180, 254, 277, and 281. On backprop and its history, see pp. 286, 327, and
338. On Hopfield, see 113, 301 [6].

22It is interesting that these games require lots of parallel processors to render texture and shading in real-time graphics
processing using linear algebra (cf. chapter 6), and that the same parallel processing circuits can be used to run neural
networks. When graphics cards were first developed they did not have neural networks in mind!

23Andrey Kurenkov’s history (https://www.skynettoday.com/overviews/neural-net-history) is excellent on these
points. The achievements after 2010 are too numerous to survey here, but see https://bmk.sh/2019/12/31/

The-Decade-of-Deep-Learning/.

https://www.skynettoday.com/overviews/neural-net-history
https://bmk.sh/2019/12/31/The-Decade-of-Deep-Learning/
https://bmk.sh/2019/12/31/The-Decade-of-Deep-Learning/

CHAPTER 3. HISTORY OF NEURAL NETWORKS 35

3.8 The Age of Generative AI

In 2017 Google introduced the transformer architecture—discussed in chapter 17—which was subse-
quently adopted and extended by Open AI and many other groups in academia and industry [157]. The
power of this architecture became widely known with the public release of Open AI’s ChatGPT in 2022.
ChatGPT had the fastest adoption rate of any software in history, and marked another shift in the history
of neural networks and AI broadly. In this period, it became common to train extremely large models on
vast amounts of data, using innovative new architectures like the transformer architecture. The resulting
neural networks could be used to generate convincing outputs in multiple modalities, but especially text,
video, and audio, hence the term Generative AI.24,25

The transformer architecture builds on several streams of prior work. It is coming right off all the advances
in training deep networks just discussed. They make use of huge datasets and benefit from innovations in
hardware design.26 They develop many layers of internal representations that have a great deal of context
awareness, which they can use to (for example) represent relationships between different parts of a fairly long
conversation. The details are discussed in chapter 17. The main initial use of transformer models was to
generate natural language, and indeed ChatGPT is an example of a large language model (LLM), which
is a language model trained on a large dataset–for example, a significant portion of text on the internet–to
generate human-like text.27 The text produced by these models is now so convincing that they (in some
contexts) pass the Turing Test, producing outputs that are not distinguishable from what a human can
produce. Related advances (e.g. diffusion models) produce convincing images, videos and audio.

These changes in the landscape of neural network research are significant enough that we are dubbing
this the “age of generative AI” (the histories are just now being written, after all). This was when AI could
really start generating new content, like news stories, essays, songs, images, and movies. In the future this
will probably be seen as a landmark event, because this is when all the old doubts about neural networks
were in a sense put to rest (of course, debate continues, but neural networks have clearly moved to the center
of discussion), and when neural networks began to lead to fundamental changes in human existence, that we
have not yet come to terms with.28

It has been a strange but exciting experience writing different versions of this chapter over the last few
decades (the first version was written around 2005; see the Preface) as neural networks were out of vogue,
then back in style, and then, arguably, completely transformed human society. No doubt more revisions to
this chapter are coming, as the landscape continues to evolve.

24One mark of the shift is that it became extremely expensive to train state-of-the-art models, and so reseachers could not
train their own but had to rely on models trained by large companies such as Google, Open AI, and Microsoft.

25Though the term generative “AI” is used, this usually means neural networks that have been used to generate these outputs,
so this could more accurately be called “generative neural networks”, but the term generative AI has stuck (see the first footnote
in chapter 1).

26As evidence, consider the explosive growth of NVIDIA, which started off in the graphics card business but is now a major
driver of generative AI.

27In fact, the terms “transformer” and “llm” have become conflated, though they are distinct (more on this in chapter 17).
28This was also when “artificial general intelligence” (AGI) started entering the public consciousness, that is, AI that is not

just able to do specific things in specific domains, but could behave in an intelligent manner in multiple domains and contexts.
It is not generally believed AGI has been achieved as of yet.

Chapter 4

Basic Neuroscience
Jeff Yoshimi, Chelsea Gordon, David C. Noelle

In this chapter, we review the basic physiology of neurons and synapses, which are the basis of equations
describing how node activations and weight strengths change. We also provide an overview of the major
circuits of the brain, reviewing their basic features, and giving a sense of how these circuits are understood
from a neural networks standpoint.1

4.1 Neurons and synapses

4.1.1 Neurons

Neurons are brain cells, which have all the machinery any cell has: mitochondria, Golgi apparatus, a nucleus
whose DNA is actively expressing genes, and a membrane studded with an array of proteins. Neurons
communicate using a finely orchestrated pattern of electrical, chemical, and molecular processes. Neural
network models typically abstract from most of these details. Classical neural network models only simulate
certain high level features of the way information is transmitted from one neuron to another. Models in
computational neuroscience (described in chapter 1) capture more of the biological details, but still abstract
away from many features of real neurons. In the next two sections we give a rudimentary overview of the
structure of neurons and synapses, focusing on features that are commonly referenced in neural network
models.

Figure 4.1: Main structures of a neuron.

Most neurons have dendrites, axons, and a cell body (see Fig. 4.1).2 These are not really distinct

1Some useful general references include Kandel (2000) [73] and Gazzaniga (2002) [52]. An outstanding online source is
https://science.eyewire.org/home. A detailed book length treatment of the topics outlined in this chapter is [119], which
has also been developed into a free online text supported by open source software: https://compcogneuro.org/.

2There are many types of neurons in the brain, but in this section we focus on the multipolar neuron. This type of neuron

36

https://science.eyewire.org/home
https://compcogneuro.org/

CHAPTER 4. BASIC NEUROSCIENCE 37

structures, but are parts of the cell. The neuron as a whole is a kind of container, whose overall charge is
changing constantly over time like a fluctuating battery or capacitor.

Dendrites are extensions that grow out of the cell body like a tree (“dendrite” comes from a Latin
word that means “tree”). This is where information-carrying chemicals are received from other neurons.
Dendrites have small branches, which can receive signals from many other neurons. Some metaphors might
help you remember this: You can think of a dendrite as the mail-box of a neuron, receiving messages from
many nearby cells. You can also think of it as a catcher’s mitt, since it receives or “catches” inputs from
other neurons.

The cell body or soma is home to many organelles that work to produce and package proteins for the cell.
These proteins have a variety of important functions, including the production of neurotransmitters that
signal between cells. The soma sums together all the information gathered from the dendrites. If the voltage
changes enough at a part of the soma called the axon hillock, the neuron will fire an action potential or
spike along its axon. We expand on these ideas in the discussion of synapses next.

The axon is another extension growing out of the cell body. Axons can be different lengths, but they
often have a long main extension terminating in a branched structure. When the neuron fires an action
potential, electrical activity propagates down these extensions and triggers the stimulation of the dendrites
of other neurons. Continuing our metaphors: the terminals at the end of the axons can be thought of as
a neuron’s post office, where the ionic messages transmitted down the axons are packaged into neurotrans-
mitter chemicals and sent out on their route to the receiving neuron’s dendrite. Or, continuing the baseball
metaphor, the axon is like the arm of a pitcher, throwing signals to other dendrites, which catch them.3

4.1.2 Synapses and neural dynamics

Communication between neurons happens at a synapse, which is a junction where the axon of the pre-
synaptic neuron almost touches the dendrite of the post-synaptic neuron, often at a protrusion called a
dendritic spine. See Fig. 4.2.4 When an action potential reaches the axon terminal of the pre-synaptic
neuron, chemicals called neurotransmitters are released into the synaptic cleft. These neurotransmit-
ters are housed in water-balloon-like containers called vesicles. The vesicles fuse into the pre-synaptic cell
membrane when an action potential occurs, releasing their neurotransmitters into the synaptic cleft. The
neurotransmitters then bind to receptors on the post-synaptic neuron. This is like a key being fit into a
keyhole–the neurotransmitters are the keys and the receptors are the keyholes which, when opened, let ions
(charged particles) flow in to the post-synaptic dendrite. These ions are negatively or positively charged,
and the balance between the total charge of these ions on either side of the cell membrane is what is called
the membrane potential.5

There are different kinds of synapses. The pre-synaptic neurons of excitatory synapses release neuro-
transmitters, which result in the post-synaptic voltage being raised, which makes it more likely that an action
potential will occur post-synaptically. Glutamate is one of the most common excitatory neurotransmitters.
Inhibitory synapses release neurotransmitters, which result in the voltage being lowered post-synaptically,
and make it less likely that an action potential will occur post-synaptically. GABA is the most common
inhibitory neurotransmitter.

A neuron can receive both excitatory and inhibitory inputs.6 As different axons attaching to a neuron

has one axon and multiple dendrites, which allows it to receive information from many other neurons. Other types of neuron
include unipolar and bipolar neurons.

3Fast communication between long-distance neurons is made more efficient by a fatty white substance, called myelin sheath,
that wraps around the axons of neurons and insulates them, allowing better conduction of electrical signals

4There are two types of synapses, electrical synapses and chemical synapses. Electrical synapses, instead of having a cleft
between the post- and pre-synaptic neurons, have a much smaller space called a gap junction, which connects the pre-synaptic
neuron directly with the post-synaptic neuron, allowing for electrical communication. These synapses allow neurons to fire in
synchrony and are important for quick communication between neurons. However, most communication happens via chemical
synapses, which transmit much stronger signals and have more permanent effects. The main text focuses on chemical synapses.

5This charge is maintained by ion channels that selectively let some ions travel into and out of the cell. Some of these ion
channels are called passive ion channels, which stay open and allow the constant light flow of Na+ and K+ ions through the cell
membrane. There are also gated ion channels, which are those that open during an action potential and cause a much larger
exchange of ions. When these open, the ions released cause changes in the membrane potential of the post-synaptic neuron.

6What we are calling excitatory and inhibitory inputs are actually synaptic events that allow ions to rush in or out of the
cell, and thus produce excitatory or inhibitory currents. From this standpoint the neuron is like a battery or capacitor and
its membrane dynamics can be understood in terms of circuits (the “Rall model” or “cable theory” of the neuron), which can

CHAPTER 4. BASIC NEUROSCIENCE 38

Figure 4.2: Some structures associated with a synapse.

release excitatory neurotransmitters (like glutamate) and inhibitory neurotransmitters (like GABA), the
binding of neurotransmitters to receptors on the post-synaptic neuron causes ion channels to open and close,
letting different ions in and out. As a result, the neuron’s voltage goes up and down. When the voltage at
the axon hillock passes a specific membrane potential called the threshold potential, an action potential
is fired. The process is illustrated in Fig. 4.3. In the left panel, two excitatory synapses are activated
successively, and the membrane potential is increased each time until it passes the threshold potential and
an action potential is fired.7 In the right panel, first an excitatory synapses is activated, which raises the
membrane potential, and then an inhibitory synapse is activated, which reduces the membrane potential, in
effect turning off or “shunting” the impact of the first excitatory input, so that no action potential occurs.
Changes in membrane potential due to excitatory and inhibitory events that occur below threshold are
sometimes referred to as sub-threshold dynamics.

As more excitatory signals are received, the membrane potential will exceed the threshold potential more
often, and action potentials will begin to occur more frequently. Thus we can represent the overall activity
of a cell in terms of its firing rate, which is measured in number of spikes per unit time, usually spikes per
second. A highly “active” neuron is one that produces many spikes per second (e.g. 200 Hertz, which is 200
times per second), while a more dormant or quiescent neuron might only produce a few spikes per second
(e.g. 2 Hertz). In a time series plot of such a neuron’s membrane potential, spikes for a highly active neuron
are close together; for a less active neuron they are farther apart. You can get a feel for this in the Simbrain
simulation spikingNeuronTwoInputs.zip. In the simulation you can increase the firing rate of the neuron on
the left by raising the excitatory input. You can then reduce its firing rate by raising the inhibitory input.
See figure 4.4.

These observations are the basis of “rate-coding” models. In these models, the number in a node rep-
resents a neural firing rate. Weights in these models capture the idea the neuron sums together excitatory

be precisely described in computational neuroscience models. The membrane potential has an average resting state, usually
around -70 mV, which is the difference between the electrical charge inside and outside of the membrane when a neuron is at
rest. Excitatory and inhibitory inputs alter this resting state. One metaphor that helps here is that of a tank of water or a
graduated cylinder, where the level of water represents the current voltage potential. There is a hole on the side of the tank
that constantly lets some water out, and a tube above it that constantly lets some water in. These produce a “leak” current
that balances out to a certain standing level in the tank, which is like the resting potential of a cell. That level is roughly where
the hole on the side of the tank is. Excitatory inputs briefly open up additional tubes above the tank, letting more water in and
raising the water level (the membrane potential), and inhibitory inputs briefly open up additional tubes below the tank, letting
more water out and reducing the water level. These transient events lead to fluctuations in the water level which correspond
to sub-threshold dynamics of the membrane potential.

7Notice the signals occur at spatially distinct dendrites and at different points in time, and that they have a cumulative
effect on the membrane potential at the soma. This is known as spatial and temporal summation.

CHAPTER 4. BASIC NEUROSCIENCE 39

Figure 4.3: (Left) Two successive excitatory inputs increase the neuron’s membrane potential beyond the
threshold potential, after which it fires an action potential. (Right) First an excitatory input increases the
neuron’s membrane potential, then an inhibitory input reduces it.

Figure 4.4: (Left) A Simbrain simulation that illustrates how different combinations of excitatory and in-
hibitory inputs produce different firing rates in an output neurons. As the excitatory input is increased, the
firing rate increases, and as inhibitory input is increased, the firing rate decreases. The output neuron is in
the middle of a spike at the moment shown.

and inhibitory signals. Rate coding is in the background of many connectionist models, where much of the
biology is abstracted away and all that is maintained is the general idea that a weighted sum of inputs
determines the output of a node. More complex computational neuroscience models describe the changing
membrane potential directly, or simulate the action potential using discrete spiking events (see chapter 19).
These models are discussed in the chapter on computational neuroscience and in the chapter on classical
nodes and weights.

Synapses are modifiable. For example, Long Term Potentiation or LTP occurs when certain synapses
transmit information repeatedly in a short time. When this happens the synapse is “strengthened”: when
an action potential reaches the same synapse after LTP has occurred, the post-synaptic response will be
greater than it was before.8 Long term potentiation is the basis of the Hebb rule, discussed in chapters 3
and 9. The basic idea of the Hebb rule is that “neurons that fire together, wire together.”9

Synapses can be modified in other ways. Sometimes synapses are weakened via a process of Long term
depression or LTD. Synapses can be modified in other ways as well, and the study of synaptic plasticity is

8The details of LTP are not well understood, but roughly what happens is this: the repeated stimulation of the post-synaptic
neuron results in an influx of calcium ions, which has a number of effects. One is the recruitment of additional receptors to the
post-synaptic dendrite, so that when neurotransmitters are subsequently released into the synaptic cleft more receptors open
and more ions are allowed into the post-synaptic cell.

9This can be visualized in several Simbrain simulations, for example autoassociator1.zip and autoassociator2.zip in the
courseMaterials directory.

CHAPTER 4. BASIC NEUROSCIENCE 40

a major area of research. These changes in synaptic efficacy are thought to be the basis of most forms of
learning in humans and animals. The idea that changing connection strengths are the basis of learning is
what gives “connectionism” its name, and is fundamental to neural network theory.

4.1.3 Neuromodulators

We mentioned GABA and glutamate above. These are neurotransmitters that support local communication
from one neuron to another. Other neurotransmitters—which are sometimes called “neuromodulators”—are
connected with circuits that project across larger regions of the brain and have longer-lasting impacts.10

Some neural network simulations model the effects of these neurotransmitters.
Norepinephrine, or noradrenaline, is produced by neurons in the brainstem and broadcast throughout

the brain. It regulates arousal: there is a greater amount of norepinephrine when awake and a decreased
amount while asleep.

Serotonin is also produced by cells in the brainstem. Serotonin is involved in attention and complex
cognitive function. Low serotonin has been linked to depression. A type of medicine referred to as an SSRI
(selective serotonin reuptake inhibitor) causes less of the serotonin released by cells to be taken back into
the pre-synaptic neuron, so that more serotonin stays in the synapse and gets used.

Acetylcholine, found in motor neurons in the spinal cord, is responsible for movement and also mediates
certain forms of plasticity. Too little acetylcholine can inhibit movement, while too much acetylcholine can
cause twitching. Black widows inject a chemical in their bite that promotes the release of acetylcholine,
which leads to severe muscle twitching.

Dopamine is a neurotransmitter produced in the basal ganglia (in the “nigrostriatal pathway”), which
plays an important role in controlling movement. Shortage of dopamine in the system can lead to Parkinson’s
disease, characterized by an inability to initiate movements. A drug called L-Dopa can be used to stimulate
the production of dopamine, which helps to even out dopamine levels and alleviate some of the symptoms
exhibited by Parkinson’s patients. Dopamine is also important in regulating the reward-based learning that
occurs in the basal ganglia, which is discussed further below. It is important to note that dopamine is not a
direct signal of reward (that signal is carried by other opioid-based circuits in the brain), but rather a signal
of how much more or less reward than expected was obtained; a kind of error signal. When things are going
better than expected, dopamine neurons fire at an increased rate. When things are going worse, they fire
at a reduced rate. When you are not expecting a donut (assuming you like donuts and are hungry), the
arrival of a delicious donut will cause dopamine neurons to start firing. But as you eat, even if you are still
hungry, dopamine neurons stop firing, because your expectations are no longer changing. On the other hand,
if you were expecting those donuts when the door opened and you are disappointed to see that your friend
forgot to bring them (oh the horror), your dopamine neurons will fire less than normal. Thus dopamine
is an important signal which can be used to train animals, by encouraging them to do things that lead to
unexpected rewards, and by discouraging them from doing things which lead to unexpected disappointment.
This signal is key to computational models of the the basal ganglia, discussed below.

4.2 The Brain and its Neural Networks

In this section we describe regions of the brain, functions associated with them (summarized in Fig. 4.5),
and give a sense of the computational role they serve in cognition and how they are modeled by neural
networks.

It is worth noting at the outset that these associations between brain regions and cognitive functions are
somewhat artificial. Most types of cognition are based on circuits that span multiple brain areas. Conversely,

10On the relationship between neurotransmitters, neuromodulators, and neurohormones “A neurotransmitter is a messenger
released from a neuron at an anatomically specialised junction, which diffuses across a narrow cleft to affect one or sometimes
two postsynaptic neurons, a muscle cell, or another effector cell. A neuromodulator is a messenger released from a neuron in the
central nervous system, or in the periphery, that affects groups of neurons, or effector cells that have the appropriate receptors.
It may not be released at synaptic sites, it often acts through second messengers and can produce long-lasting effects. The
release may be local so that only nearby neurons or effectors are influenced, or may be more widespread, which means that the
distinction with a neurohormone can become very blurred. A neurohormone is a messenger that is released by neurons into the
haemolymph [or, in mammals, into the blood] and which may therefore exert its effects on distant peripheral targets.” [25].

CHAPTER 4. BASIC NEUROSCIENCE 41

most areas of the brain are involved in many kinds of cognition and behavior. For instance, motor regions of
the brain are known to be active in body movements, but also participate in movement planning, observation
of the movements of others, and even the perception of objects that can be manipulated (i.e., grasped). Thus,
when we talk about “language areas” or “decision-making regions”, we are discussing regions that are active
when the relevant behaviors occur, but these regions are not solely responsible for such tasks. In the same
way that neurons work in groups to process information, higher brain areas work together to create complex
thought and behavior.

Figure 4.5: (Left) The lobes of the brain. (Right) Rough map of functions, abilities, and conceptual domains
associated with major brain areas.

4.2.1 Cortex

Fig. 4.5 (Left) shows the major regions of the brain. Fig. 4.5 (Right) summarizes the functions associated
with these areas. These are regions of the cerebral cortex, which is the wrinkled outer surface of the brain
(cortex literally means “rind”, like the outer skin of an orange or lemon). The wrinkling is caused by the
cortex folding, like a crumpled piece of paper, in the limited volume of the skull. This folding results in bulges
(called “gyri”) and valleys (called “sulcuses” or “sulci”) on the surface of cortex. The cortex is thought to be
involved in the higher processing functions distinctive of complex behavior and intelligent animals. The size
of an animal’s cortex roughly correlates with the complexity of its behavior and overall intelligence: humans
and dolphins have a relatively large cortex, chimps a smaller cortex, rats even smaller, and non-mammals
like birds and insects have no cortex at all. The cortex is composed of two hemispheres, the right and the
left hemispheres, connected by a structure made up of nerve fibers called the “corpus collosum”. Between-
hemisphere communication occurs through the corpus collosum. In patients with a neurological disorder
called “epilepsy”, where too much neuronal firing in the brain leads to seizures, the corpus collosum is often
severed (this is called a “collosotomy”) to reduce between-hemispheric communication and prevent future
seizures. Both the right and left hemispheres are made up of the same lobes (occipital, temporal, parietal,
and frontal).

From a computational standpoint, the cortex is the brain’s primary long-term memory system, which
stores all the many things we know about the world: how we classify objects, our concepts, our beliefs,
our memories, our knowledge about our friends and family, our life goals and fundamental cares, almost
everything is coded into this massive memory system. Many neural network models are directly or indirectly
simulations of our long-term cortical memory system. They model pattern recognition via learning, memory
storage and recall, pattern completion, spreading activation, and many other phenomena. In fact, unless
otherwise noted, most neural networks are probably ultimately models of how cortex works.

The cortex has dense bi-directional recurrent connections that allow it to reverberate in sustained pat-
terns. It also has long range connections between areas that allow it to produce complex brain-wide patterns
or oscillations (though some circuits are also similar to feed-forward networks). In concert with the central
thalamic relay station (more on this below), the posterior and parietal parts of cortex reverberate and co-
ordinate sensory input and motor outputs when you engage in most behaviors. The frontal regions manage
our plans and actions. Other circuits refine these signals, producing smoother movements (cerebellum),

CHAPTER 4. BASIC NEUROSCIENCE 42

coordinating sequences of activations to produce reward (basal ganglia), and managing recent memories
(hippocampus). Thalamo-cortical oscillations are correlated with consciousness. When you see something
and are aware of it, sustained processing in multiple cortical areas is associated with your experience: visual
activations are associated with visual awareness, activation in somatic areas is associated with awareness
of your body, more distributed activations are associated with inner thoughts, etc. These are sometimes
referred to as the neural correlates of consciousness or NCCs.

Learning in this long-term memory store occurs via a mixture of unsupervised and supervised learning.
Synapses are updated by LTP and other means, which can be modeled using unsupervised learning algorithms
like Hebbian learning and unsupervised architectures such as self organizing maps (see chapter 9). One theory
of cortex is that it is a giant collection of internal models in long-term memory: models of physical objects,
the people you know, language, etc. These models learn from unsupervised methods, but they also come
to have expectations about external inputs and inputs from other models. On this view, most processing
in the cortex, and thus most of what we see and hear and understand, is based on what we expect, based
on our internal models of situations. The signals that flow through cortex are actually error signals–a kind
of training signal–which indicate how what we see differs from what we expect. Thus cortical networks
incorporate elements of supervised learning (chapter 12). This view, known as the “predictive coding” or
“predictive processing” view, originates in part in computational models of visual cortex [129], but it has
since developed into a more general view about the structure of perception and cognition and their realization
in the brain [31].

In many cortical areas there is a progression from areas that handle low-level sensory processing (e.g. edge
detection in primary visual cortex, or tones in primary auditory cortex) to regions that handle more complex
pattern recognition, like face recognition. The reverse direction is similar: high level plans are handled by
more “interior” networks, while detailed motor movements are handled closer to the output layers of the
cortex, that feed to thalamus and then to muscle systems. Thus, many cortical areas have a hierarchical
structure, which is precisely what is modeled by deep networks.

4.2.2 The Occipital Lobe

The occipital lobe and some of its features are shown in Fig. 4.6. Its most dominant feature is the
visual cortex, which supports visual processing, including edge detection, color detection, and simple
motion detection. Damage to the visual cortex can produce cortical blindness, even if the eyes are intact.
Processing begins in the eye (in the retina, which is itself a complex neural network), and is then passed
along to several structures, most prominently the visual cortex. Processing within the visual cortex occurs
in a series of stages, which are thought to correspond to the extraction of increasingly complex features
of a visual scene. For example, V1 and V2 process information about edges and form, V4 is involved in
processing of color, and area MT plays a role in motion processing.

Figure 4.6: The visual cortex and associated structures.

Each of the regions of visual cortex contains something called a retinotopic map, which is a full neural
map of locations in the retina, where groups of neurons nearest one another process information about nearby
areas in visual space. More generally, a topographic map is an area of the cortex where sensory information

CHAPTER 4. BASIC NEUROSCIENCE 43

is processed in a spatially organized manner. We will see that multiple sensory regions contain topographic
maps of their respective sensory information. In chapter 9 we will see that some neural network algorithms,
like self organizing maps, can automatically produce banks of detectors that are topographically organized.

Information passes out of the visual cortex in two streams: a dorsal stream to the parietal lobe, which
is involved in coordinating visual and spatial information, and a ventral stream to the temporal lobe,
which is involved in processing complex visual features of objects and semantic knowledge, i.e. information
about what things are (see Fig. 4.6). We will discuss these pathways in more detail below.

Figure 4.7: A well-known deep neural network architecture AlexNet (based on [80]) whose activations match
those of actual brain areas. The top level shows the network architecture, and the bottom panel shows
receptive fields (activations that maximally activate specific nodes) of a similar network [59]. Though these
networks were developed as an engineering tool to classify images, they do a good job of describing neural
activation in V1, V2, V4, and IT.

It has emerged in recent years that deep learning networks are particularly well suited to describing what
these areas of the brain do. These networks are trained to recognize images, which is a useful engineering
application, but it turns out they do a good job of describing neural activity in the brain. For example, a
well known convolutional deep network known as “AlexNet” [80] is shown in the top panel of figure 4.7. It
develops topographic maps similar to those in the brain. The activations it produces at its various layers in
response to images match the activations of the brain in response to the same images quite well.The earlier
layers of the model mimic the response properties and receptive fields of lower levels of processing, like V1,
and later layers mimic properties V4 and ventral stream neurons in IT. The exciting thing about these models
is that we can produce pictures of their receptive fields, showing precisely what kind of input each neuron
learned to respond to.11 As can be seen in the figure, lower level layers in this kind of network become edge
detectors, further downstream layers respond to combinations of these features (compare Selfridge’s demons
from chapter 3), while IT layers respond to dogs, cats, etc.12 The use of convolutional networks to model
neural activations is further developed in chapter 14.5.

11For a visual sense of how these networks work, and what the activations are at different processing layers, see https:

//cs.stanford.edu/people/karpathy/convnetjs/.
12There has also been some skepticism about deep network approaches to human vision [19].

https://cs.stanford.edu/people/karpathy/convnetjs/
https://cs.stanford.edu/people/karpathy/convnetjs/

CHAPTER 4. BASIC NEUROSCIENCE 44

4.2.3 The Parietal and Temporal Lobes

The temporal lobe is involved in auditory processing and semantic processing (see Fig. 4.8). The audi-
tory cortex is in the temporal lobes. Much of the sensory information from the ears is sent to auditory
cortex. Primary auditory cortex (A1) contains a tonotopic map of the acoustic properties of sounds. That
is, neurons in this region respond to preferred frequencies of sound in a similar way to the preferred spatial
regions in retinotopic maps. Auditory information is also processed in a somewhat hierarchical fashion, sim-
ilar to vision. After A1, information passes to the secondary auditory cortex (A2), where sound localization
and processing of more complex sound features occurs. When the auditory cortex is damaged, people can
experience hearing deficits (they may suffer from “central hearing loss” or cortical deafness) even if the ears
are intact. Other parts of the temporal lobe are involved in language processing. Wernicke’s area, located
in the temporal lobe13, plays an important role in speech understanding. This region is involved in assigning
meaning to sounds. Damage to this area can produce Wernicke’s aphasia (also receptive or fluent aphasia),
where patients are unable to understand either spoken or written language, but where language production
often remains intact.14

Figure 4.8: Auditory cortex and associated structures.

The temporal lobe also receives connections from the visual processing centers of the occipital lobe, via
the ventral stream (Fig. 4.6). The ventral stream is involved in object recognition. For example, the fusiform
face area (FFA) in the temporal lobes is connected with the recognition of faces. Damage to this region will
cause prosopagnosia, an inability to recognize faces. It has since also been found that the FFA is active
in bird experts while looking at birds and chess players while recognizing chess board configurations. This
suggests that this region is involved in recognition of objects that one has expertise with [16]. Another form
of damage to the ventral stream can cause ideational apraxia, where patients have difficulty interacting with
objects because they can no longer understand what the object is used for.

The parietal lobe, shown in Fig. 4.8, is involved in integrating information from multiple regions of
the brain, as well as processing information about space. The dorsal stream carries spatial information from
the occipital to the parietal lobe. It is involved in spatial attention, reaching, grasping, using tools, and
other activities that coordinate visual information with motor behavior. Damage to regions of the parietal
lobe can produce a number of problems. Patients with hemineglect tend to only pay attention to certain
parts of the visual field. Such a person might only eat food one one side of their plate, or draw images
on only one side of a page. It is said that a director who had hemineglect produced movies in which the
action only happened on one side of the screen. Another form of damage to the dorsal stream will cause
ideomotor apraxia, which results in difficulty using objects in space. Someone with ideomotor apraxia will
have difficulty converting the idea of an action into the action itself. For example, they might have difficulty
combing their hair when asked to do so, even if they can identify the hair brush and understand the function
of the brush. The difficulty is in the execution of the action. This disorder highlights the role of the dorsal
stream in coordinating action in space.

13More specifically, the temporal lobe in the dominant hemisphere, which is usually the left hemisphere.
14An example of speech in this condition are here: https://www.youtube.com/watch?v=3oef68YabD0.

https://www.youtube.com/watch?v=3oef68YabD0

CHAPTER 4. BASIC NEUROSCIENCE 45

The parietal lobe also receives tactile information from the body via the somatosensory cortex (Fig.
4.9), which in turn receives touch and temperature information processed by specialized mechano-receptors
on the skin. When the somatosensory cortex is stimulated, people report feelings in specific parts of the
body. The somatosensory cortex is a somatotopic map, in which nearby regions of neural tissues respond
to pressure or temperature on nearby regions of the body. As shown in Fig. 4.9, more sensitive body parts
are allocated more space in somatosensory cortex. For instance, the fingers and lips have greater cortical
representation than other regions, while the shoulders and trunk have much less. In the somatosensory cortex
of a mouse, almost all of the space is allocated to the whiskers, with each whisker receiving a relatively large
amount of neuronal space. The primary somatosensory cortex is located right next to the primary motor
cortex (discussed below), allowing for quick communication between these regions.

Figure 4.9: Somato-sensory and motor processing.

4.2.4 The Frontal Lobe

The frontal lobe is involved in higher-level cognitive functions, or executive functions, like the ability to
pay attention, select strategies, solve problems, plan actions, make decisions, inhibit or suppress behaviors,
and in general control one’s behavior. These functional associations rely upon a distributed network of
regions including the orbito-frontal, dorso-lateral prefrontal, and ventro-medial areas.15 The rear-most parts
of the frontal lobe, like the primary motor cortex, are directly involved in action. In fact, the frontal
lobes can be thought of as controlling action on a spectrum from specific movement in the primary motor
cortex to increasingly abstract planning and decision making in the front-most parts of the cortex, like the
orbito-frontal cortex. Some language processing also takes place in the frontal lobe. Broca’s area (Fig. 4.9)
is responsible for many language functions, including gesture, understanding of action and action-language,
and language production. Broca’s aphasia (or expressive aphasia) impacts the ability to produce speech,
though comprehension can remain intact. Here is an example of someone with Broca’s aphasia explaining
how they got to the hospital: “Yes... ah... Monday... er... Dad and Peter H... (his own name), and Dad....
er... hospital... and ah... Wednesday... Wednesday, nine o’clock... and oh... Thursday... ten o’clock, ah
doctors... two... an’ doctors... and er... teeth... yah.”[55].16

The parts of the frontal lobe closer to the center of the brain are directly involved in controlling the
body. Neural outputs to the body originate in the primary motor cortex (see Fig. 4.9). When parts of
the primary motor cortex are stimulated people contract the relevant muscles of their body. When premotor
cortex is stimulated, people will actually start to make complex movements, such as grasping. Supplementary
motor cortex is less well understood and does not include a map of the body in humans, but this region is
thought to play an important role in coordinating movement plans, in particular sequences of movements.

15The Ventro-medial prefrontal cortex has been shown to be involved in the representation of the internal state of the body
and the relative value of decisions. Orbito-frontal cortex is also involved in decision-making and is thought to play a particular
role in assessing reward.

16The example is cited in https://en.wikipedia.org/wiki/Expressive_aphasia.

https://en.wikipedia.org/wiki/Expressive_aphasia

CHAPTER 4. BASIC NEUROSCIENCE 46

Figure 4.10: The prefrontal cortex.

The dorso-lateral prefrontal cortex or PFC is associated with working or short-term memory. It is part
of the cortex but has evolved a distinctive structure that supports the unique demands of working memory. Its
cells are relatively isolated from other areas, but with dense recurrent connections that facilitate a particular
type of neural dynamics, an “attractor structure” (see chapter 10), whereby activations tends to settle into
stable patterns for a time, which are maintained in cortical “stripes” [79]. These stripes are thought to encode
task information in working memory. Your current plans and goals are maintained by active stripes in your
PFC. As you go through your day doing one thing after another–making breakfast, driving to school, reading
a book, etc.–different stripes corresponding to current goals are sequentially activated in PFC. Support for
this idea is provided by experiments that show that while humans and monkeys maintain goals to look or
reach in different directions, specific populations of neurons are active in the PFC. In some neural network
models, actively maintained tasks are simulated simply by clamping certain nodes in the on or off position.
For example, one node might correspond to reading letters, while another might correspond to saying what
color the letters are written in, in a model of a task where you can either read letters or say their color.17

Damage to the frontal lobe results in a variety of deficits, including difficulties with impulse control,
impaired judgment, personality abnormalities, and an inability to make any decisions at all. A famous case
of damage to the frontal lobe is provided by Phineas Gage, a 19th century railroad worker whose skull was
pierced by a large iron rod in an explosion. Once the iron rod was removed, Gage retained full cognitive
function, and the only prominent change was in his behavior. After the surgery, he had a more difficult time
inhibiting certain behaviors, became more hostile, drank excessively, and eventually became homeless.

4.2.5 Other Neural Networks in the Brain

We have been focusing on the cortex, which is by far the most dominant structure in the brain. Many neural
network models are basically modeling cortex and how it extracts features from sensory inputs layer by
layer, maintains task information in the frontal areas, etc. These are models of different aspects of long-term
memory. However, there are also many other specialized circuits that have been modeled by distinctive forms
of neural network model. See figure 4.11 for an overview of the structures we discuss here.

The hippocampus is a kind of short-to-medium-term memory system attached to the bottom of the
cortex.18 It is associated with memory consolidation, spatial memory, and episodic memory. It has a special
neural network structure that allows it to watch what is happening in the cortex, and then build up special
“sparse coded” representations.19 While learning in the cortex is slow, learning in the hippocampus is fast.

17These are models of the Stroop effect; see https://en.wikipedia.org/wiki/Stroop_effect
18In fact it is directly attached to the temporal lobes, and is hard to see as being separate on visual inspection, but its neurons

are arranged differently than the neurons in the cortex.
19For simulation-based tutorials on computational models of hippocampus see https://compcogneuro.org/.

https://en.wikipedia.org/wiki/Stroop_effect
https://compcogneuro.org/

CHAPTER 4. BASIC NEUROSCIENCE 47

Figure 4.11: Some specific structures in the brain with specific neural network structures.

It can pick up all the things that happen in your day and remember them for a few weeks or even longer.
These memories don’t always last, and in fact new neurons are constantly being created in hippocampus (it’s
one of the few parts of the brain where neurogenesis continues into adulthood). Dreams are thought to be
mediated by hippocampus, which is why dreaming often involves recent events. When things get repeated
enough in hippocampus, they are consolidated into the cortex. It’s like it learns a fast representation, and
then that either evaporates or if repeated enough, gets transferred to cortex. Damage to the hippocampus
can produce various forms of amnesia, e.g. anterograde amnesia, now familiar via movies like Memento,
where characters live entirely in the present and cannot remember things that they learn after the date
of their injury. Interestingly, patients with this form of amnesia are often able to create new procedural
memories, such as a “memory” of how to ride a bike, but are unable to create any new episodic, semantic,
or fact-based memories, such as memories of events in the news. Neural network models of hippocampus
have been used to study how memories can be consolidated into long term memory. The models can, for
example, be used to simulate amnesia.

The basal ganglia is an important collection of nuclei beneath the cortex which have a variety of
functions, including (in concert with pre-frontal cortex) control of voluntary action, and learning how to
take actions that are likely to lead an agent to rewarding stimuli. It is thought to implement a form
of reinforcement learning, whereby actions that produce reward tend to be reinforced over time, and
actions that produce costly outcomes are inhibited (this formalizes older ideas in psychology about operant
conditioning). It’s a bit like a task scheduler or sequencer, orchestrating extended sequences of activations
in the cortex. It is also thought to be involved in deciding what tasks and goals should be loaded into the
frontal areas of the brain, determining what tasks are maintained in PFC’s stripes, and in what sequence. It
implements reinforcement learning in part using the neuromodulator dopamine, discussed above. These same
reinforcement learning techniques have also been shown to work well in machine learning.20 In fact, there
was a great deal of excitement in the 1990s when it was first discovered that dopamine neurons in the basal
ganglia responded to rewards in the same way as certain variables in reinforcement learning models: more
activity when reward is higher than expected; less activity when reward is less than expected [142, 114].
When things go better than we expect, dopamine is released, and synapses are strengthened, reinforcing
whatever we have done recently, making us more likely to do the same thing in the same situation in the
future. Thus the dopamine system and the basal ganglia “sequencer” learns to execute sequences of goals
and actions that tend to produce reward in the long run and avoid punishment.21

20Reinforcement learning was, for example, used in Alpha Go (mentioned in chapter 1), the first neural network to beat a
professional human Go player https://deepmind.com/research/alphago/

21Some of these ideas can be studied using the actor-critic model in Simbrain (available from the simulation menu). Links to
operant conditioning can be studied using the Rescorla-Wagner and operant conditioning simulations). The relation to frontal

https://deepmind.com/research/alphago/

CHAPTER 4. BASIC NEUROSCIENCE 48

Figure 4.12: The cerebellum as a pattern associator, mapping sensory states to motor actions. (Left) An
input-output architecture: synapses where input lines and output lines overlap can be turned on when a
teacher signal turns on. (Right) Associated areas of the cerebellum thought to correspond to these functions.

The cerebellum is involved in fine motor control (it also has cognitive functions but these are less
well understood). When it is damaged, movement becomes jerky and ballistic (ataxia). Neural network
models treat the cerebellum as a massive pattern associator, or even as a neural “lookup table”. It has
a structure that made it an attractive target for computational neuroscientists in the late 1960s and early
1970s [96]. As can be seen in figure 4.12, it receives many inputs and produces many outputs, and there are
also neurons that seem to climb up and surround certain neurons, suggesting that they carry an error signal
used to update certain synapses. This led to the idea that it was a pattern associator trained by supervised
learning, a theory which remains popular, though the issue is not settled. One thing it certainly does is
learn to associate bodily and sensory inputs with motor outputs, which helps produce rapid and smooth
action sequences. It’s as if the coarse-grained motor plans produced by the cortex and basal ganglia are
“smoothed” by this cerebellar associative map.

The thalamus is a subcortical region responsible for processing and relaying information between the
cortex and sensory and motor structures on the body. Information from most sensory modalities passes
through the thalamus on the way to the cortex. It is sometimes called the “gateway to the cerebral cortex.”
Recurrent loops between the thalamus and cortex (thalamo-cortical loops) produce wide-spread synchronized
patterns of activity in the cerebral cortex which are, as noted above, associated with conscious experience.

Finally, more fundamental functions of the brain, like the control of the lungs, heart, and sleep, take
place in the brain stem. Damage to the brain-stem often results in death.

lobes and task maintenance is explored in CECN models at https://compcogneuro.org/.

https://compcogneuro.org/

Chapter 5

Activation Functions
Jeff Yoshimi, Scott Hotton

As discussed in the introduction, artificial neural networks are comprised of nodes connected by weights.
The nodes are usually pictured as circles and are associated with a number called an activation, while the
weights are represented by lines connecting the nodes and are associated with a number called a strength.
In Simbrain, node activations correspond to the colors of the nodes and to the number inside the nodes, and
weight strengths correspond to the color and size of the filled disks at the end of the lines connecting nodes.
In figure 5.1 (Left), three nodes are connected to one node via three weights.

When a neural network simulation is run, node activations and weight strengths change. Neural networks
have dynamics, which describe a changing pattern of activation across the nodes and (in some cases) a
changing pattern of strengths of across the weights. To see these dynamics in Simbrain, look for the triangular
“play” button . When you press it you usually see node activations change, and in some cases weight
strengths. In this chapter we describe some of the rules that govern changing node activations.1 These are
based loosely on the physiology of neurons and action potentials, which was discussed in chapter 4.

Rules for updating node activations make use of an activation function, which sets the activation of a
node based on the values of incoming node activations and the weights connecting them together. These are
classical rules that have been used in many kinds of simulations since the early days of neural networks. There
are many other rules for updating neural networks–some geared more towards computational neuroscience,
some towards engineering–but even today these classical rules are frequently used.2

5.1 Weighted Inputs and Activation Functions

We will represent the activation of the jth node of a network by aj . The strength of the weight connecting
the jth node to the kth node will be denoted by wj,k. This notation is illustrated in figure 5.1. Activation
aj of node j is updated by first computing the weighted input to node j (roughly: the weighted sum of
activations from other incoming nodes) and then passing that value through an activation function denoted
by f . The basic flow of operations is shown in figure 5.1 (Right). In this section we discuss weighted inputs
in more detail and then consider three of the most common forms for the activation function: threshold,
linear, and sigmoid.

A basic feature of a node’s activation is that it is a function of the activations of other nodes attached to
it, and also the strengths of the intervening weights. This can be computed as a simple linear combination
of incoming activations to a node, and intervening weights, which is called the weighted input (or “net

1When you open up a dialog to train a network, there is another play button that is used to modify the weights. When these
buttons are pressed the dynamics of nodes and weights is simulated. In chapters 6, 9, and 12, we discuss the rules governing
changes in weight strengths.

2To get a sense of the diversity of functions available, try editing a few nodes in Simbrain and changing the “update rule”
drop down box. As you change the selection, you will notice that the parameters available to you change. You can also wire
together a small network and just see what happens when you use these rules. Several neurally realistic “spiking” activation
rules are included in Simbrain, which are discussed further in chapter 19.

49

CHAPTER 5. ACTIVATION FUNCTIONS 50

Figure 5.1: (Left) A simple neural network with three nodes attached to one node via three weights. (Right)
Schematic of the same network to illustrate the notation being used here. Nodes 1, 2, 3 are connected to
node 4. In this example, a1 = −1, a2 = −4, a3 = 5 and (though weight strengths are not visible) w1,4 = −1,
w2,4 = 1, w3,4 = 1, b4 = 0 and the activation function is linear with a slope of 1, so that a4 = 2. Σ represents
the weighted inputs, and f represents the activation function. A network like this is included with Simbrain
as simpleNet.zip

input”) to a node. That is, each incoming activation to a node is multiplied by the intervening weight
strength, and these products are added together. We denote the weighted input to the kth node as “nk”.

Nodes are also associated with a bias, which is a fixed and unweighted input to a node (it can also be
treated as an input via a fixed weight whose strength is 1). It can be thought of as a property of the node
itself (in Simbrain it is set by editing a node’s properties), which determines the node’s baseline activation.

The value of the weighted inputs nk to a node is computed by multiplying the activations of incoming
source nodes aj by the intervening weights wj,k, and adding any bias bk. In the example shown in figure 5.1,
n4 can be expressed as:

n4 =

3∑
j=1

(ajwj,4) + b4 = (a1w1,4) + (a2w2,4) + (a3w3,4) + b4

If we have N inputs, then the value of nk can be concisely expressed as:

nk =
N∑
j=1

ajwj,k + bk

If you are not familiar with the symbol “
∑

”, it is described in this footnote.3

Some examples of computations of weighted input are provided in section 5.6.

3We use “sigma” notation to represent the addition of several numbers. Sigma is the name of the Greek letter for ‘s’, which is
short for ‘sum’. The letter has uppercase and lowercase forms. The uppercase sigma is used to denote summation. For instance,

the sum of the cubes of the first 4 positive integers can be written as

4∑
j=1

j3 = 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100. The

uppercase Greek letter ‘Σ’ tells us that we are to perform a summation. Beneath Σ it says ‘j = 1’. This tells us that we
are going to increment j starting with the value of 1. Above Σ it says ‘4’ which tells us to stop incrementing j at the value
4. The j3 to the right of Σ tells us to cube each of the values for j. We start of with j = 1 and cube it. Next, increment
j, cube it, and continue until j = 4. Finally, we sum all four of these cubed numbers. Often we use a letter for the final
value of the incremented variable so that our formulas will work with sums with an arbitrary number of terms. For example:

N∑
j=1

i3 =

(
N(N + 1)

2

)2

.

CHAPTER 5. ACTIVATION FUNCTIONS 51

0.5
0

1

0 1 0.50 1
0

1

0 1
0

1

-1

threshold piecewise linear sigmoid

Figure 5.2: The graphs for three activation functions. In each of the graphs, the horizontal axis is the
weighted input, nk, and the vertical axis is the activation, ak. Left: A threshold activation function with
(u, ℓ, θ) = (1, 0, 0.5). Middle: A piecewise linear activation function with (u, ℓ) = (1, 0). Right: A sigmoid
activation function with (u, ℓ,m) = (1, 0, 1). The inflection point is located where the horizontal dotted
line ak = (u + ℓ)/2 intersects the vertical axis. The tangent line to the graph at the inflection is shown by
the dotted line with a slope of 1. The graph converges to 1 as the weighted input increases and to 0 as it
decreases.

We now consider activation functions (labeled ‘f ’ in figure 5.1), which associate weighted inputs with
activation values. Activation functions are sometimes also called “transfer functions”. Recall that in math-
ematics, a function f associates a unique output to each input. We say the input is mapped to the output.
For example, if f(x) = x2 then

The input 1 is mapped to the output 1. f : 1 7→ 1 f(1) = 12 = 1

The input 2 is mapped to the output 4. f : 2 7→ 4 f(2) = 22 = 4

The input 3 is mapped to the output 9. f : 3 7→ 9 f(3) = 32 = 9

Two parameter values will be used repeatedly in this section: an upper value u, and a lower value ℓ (of
course, we assume ℓ < u). In Simbrain, the upper and lower values u and ℓ are set in the upper bound and
lower bound fields of a neuron, respectively.4 It will sometimes be useful to refer to these parameter values
using vector notation. For example a statement like (u, ℓ) = (1,−1) means that u = 1 and ℓ = −1.

5.2 Threshold Activation Functions

We begin with a simple activation function, the threshold activation function (it is also called a “binary”
activation function, a “step function”, or a “Heaviside function”).5 These nodes can take on one of two values,
an upper value u and a lower value ℓ, and they are thus binary valued nodes. Which value the node takes
on depends on whether weighted input is greater than or less than a threshold value θ. Threshold activation
functions are inspired by real neurons, which operate in a discrete, on-off fashion, either firing or not firing
an action potential depending on a summation of incoming excitatory and inhibitory currents (see section
4.1.2).

If the value of the weighted input to a threshold activation function is less than a threshold value θ, then
the activation of a threshold node takes on a lower value ℓ. If the value of the weighted input is greater than
or equal to θ then the activation of a threshold node takes on an upper value u.

ak = f(nk) =

{
ℓ if nk < θ
u if nk ≥ θ

4Except in the case of the binary threshold neuron, where the u is an “on value” and ℓ is an “off value.” These values are
sometimes also referred to as “ceiling” and “floor”.

5The term “binary” refers to the fact that the node can only take on one of two values. The term “step function” refers to
the way the function appears when plotted (see figure 5.2). The term “Heaviside” is a reference to Oliver Heaviside who used
these functions to study electrical circuits.

CHAPTER 5. ACTIVATION FUNCTIONS 52

The graph of a threshold activation function is shown in figure 5.2. When the weighted input increases from
below the threshold of 0.5 to above the threshold, the function’s output jumps from the lower bound, 0, to
the upper bound, 1.

5.3 Linear Activation Functions

A linear activation function computes activation as a simple linear function of weighted input. To
compute the activation we simply multiply the weighted input by the positive number, m. This number is
the slope of the linear function.

ak = f(nk) = m · nk

m is usually set to 1 so that a linear activation function is the identity function (which takes every input
to itself). This means that the activation of a node when it uses a linear activation with m = 1 just is the
weighted input to the node.

A related type of activation function is a piecewise linear function. (For this discussion we assume that
m = 1). For a piecewise linear function if the value of the weighted input is less than ℓ, then the activation
is set to the lower value ℓ. If the value of weighted input is greater than u, then the activation is set to the
upper value u. For values between the upper and lower bound, the activation is the weighted input:

ak = f(nk) =

 ℓ if nk < ℓ
nk if ℓ ≤ nk ≤ u
u if nk > u

A piecewise linear function is basically a clipped or truncated linear function. As the weighted inputs to
a node get very large or small, the activation is truncated to the upper or lower value. This is biologically
realistic (a membrane potential can’t achieve arbitrarily high or low values; a neuron can’t fire at arbitrarily
high rates). Also, it is not uncommon for a neural network algorithm to produce uncontrolled growth or
decay, which can be prevented by the simple act of truncating the signal for certain values.6

Figure 5.3: Graph for the rectified linear or “ReLU” activation function.

A special case of a piecewise linear activation function is a rectified linear unit or ReLU activation
function. The terminology comes from electronics where rectifiers are often used to truncate the negative
part of an alternating current to produce a direct current. They cut off all negative values, replacing them
with a 0, and leave the weighted input unchanged otherwise (see figure 5.3).7 Thus, they are a piecewise
linear function with no upper bound:

ak = f(nk) =

{
0 if nk ≤ 0
nk otherwise

6In Simbrain, nodes are piecewise linear with m = 1 by default, so that by default a node simply displays weighted inputs,
assuming weighted inputs fall within the upper and lower bounds of the neuron. A linear node can be converted into a regular,
non-piecewise linear node by turning off clipping.

7The rule can be even more concisely stated as the maximum value between 0 and nk, or max(0, nk).

CHAPTER 5. ACTIVATION FUNCTIONS 53

ReLU has a number of useful properties that have made it extremely popular since the deep learning
revolution of the 2010s (section 3.7). To fully appreciate these advantages it helps to compare it to the
piecewise linear activation function, which is in turn similar to the sigmoid activation function, discussed
below. Piecewise linear and sigmoid activation functions are only really responsive to inputs between their
upper and lower bounds. For large weighted inputs, they just max out at some number, like 1, limiting
their expressive power. Whatever large input you throw at them, they always just output 1. But ReLU
can take on any positive value, which gives it greater representational power. This in turns makes it more
useful in training deep networks.8 On the other hand, the clipping at 0 is nice, because it maintains a
non-linearity (many layers of unclipped linear nodes are mathematically equivalent to one layer of linear
nodes, so additional layers don’t help). The clipping also removes all negative activations, making overall
activation in a large network more sparse, so that different inputs produce nicely distinct activation patterns.
In fact, multiple varieties of ReLU function are now available, in particular “GeLU”, which allows some
representation of negative values, is also easy to compute, and has well-defined derivative for every weighted
input. In Simbrain, a ReLU unit can be approximated with a linear activation function whose lower bound
is 0 and whose upper bound is a large number.

5.4 Sigmoid Activation Functions

A sigmoid activation function can be thought of as a smoothed version of a piecewise linear activation
function. The sigmoid functions get their name from the Greek letter for “s”, and their graphs are sometimes
called “s-curves” because they resemble a stretched-out letter “s”. This is directly visible in figure 5.2. As
weighted inputs increase, the activation approaches the upper value u, which is usually 1. As weighted inputs
decrease, the activation approaches the lower value ℓ, which is usually 0 or −1. When weighted inputs are
near the inflection point of the function at 0, activation changes rapidly. Since outputs are always “squeezed”
between u and l, it is sometimes called a “squashing function.”

Sigmoid functions can be used to describe natural processes that involve a continuous increase from one
value to another. Suppose a bacterium is placed in a Petri dish and we observe how quickly bacteria grow
in the dish. At first, the population grows slowly. It then rapidly expands for a time, filling up the dish.
Eventually, there is no more room in the dish, and the population size levels off, or plateaus. Something
similar happens to the firing rate of a neuron as it receives more input currents. The firing rate rises slowly,
then rapidly, and then approaches a maximum value.

Sigmoid activation functions are notable for being differentiable everywhere. If you have not taken
calculus, this intuitively means that the function smoothly changes everywhere; there are no discontinuous
breaks or hard edges. Notice that the threshold and piecewise linear activation functions in figure 5.2 are
not differentiable everywhere. The threshold function has a discontinuity at the threshold value, and the
piecewise linear function does not change smoothly at the truncation points (u, u) and (ℓ, ℓ). The ReLU
function is discontinuous at (0, 0). The differentiability of the function means that the derivative can be
used, which in turn allows certain operations to be performed on sigmoidal nodes that would not otherwise
be possible. This led to one of the major innovations in the history of neural networks: the move from linear
networks (networks of nodes using linear activation functions) to networks using sigmoidal nodes, which
could be trained using backpropagation. This in turn led to an increase in the use of neural networks in the
1980s (see chapter 3).

We will not focus on how to compute a sigmoid function here (the function can be computed in several
different ways). We focus on the qualitative properties of sigmoid functions. However, to give a flavor of the
idea, here is one common way by which some sigmoid functions can be computed:

ak = f(nk) =
1

1 + e−4mnk

(Note that this version of the function incorporates a slope parameter m but not an adjustable upper or
lower value. Adding u and ℓ parameters would make the function even more complex). This version of

8The derivative goes to 0 for large values of sigmoids, which prevents that node from contributing to learning due to the way
errors are “back-propagated.” See chapter 13 and the discussion of vanishing gradients. Also, the derivative is 0 for nk ≤ 0,
and 1 otherwise, except at 0 (the point of discontinuity), where the derivative is not defined. A helpful discussion from Leo
Dirac that outlines other virtues of ReLU is here: https://youtu.be/S27pHKBEp30?t=1165.

https://youtu.be/S27pHKBEp30?t=1165

CHAPTER 5. ACTIVATION FUNCTIONS 54

the sigmoid function is often called a “logistic function.” There are other versions of the sigmoid function,
for example, one based on the arctangent function from trigonometry, and another based on the hyperbolic
tangent function.9

In general, we need three values to specify a sigmoid function. We need its upper bound, u, its lower
bound, ℓ, and a positive slope, m. For the formula above, (u, ℓ) = (1, 0) and m can have any positive value.
When the weighted input to a sigmoidal function equals 0, the resulting activation will be exactly half way
between the upper and lower bounds, i.e. (u + ℓ)/2, or in this case (1 + 0)/2 = .5. The point (0, (u + ℓ)/2)
on the graph of the sigmoid function is called the inflection point of the function. Each sigmoid function
is symmetrical about its inflection point. The value of m is the slope of the tangent line to the graph of
the sigmoid function at the inflection point. In other words, m tells us how steeply the graph of a sigmoid
function rises.

As the weighted input is increased indefinitely above 0, the value of a sigmoid function converges to its
upper bound u. As the weighted input is decreased indefinitely below 0, its value converges to its lower
bound ℓ. The larger m is, the more rapidly the sigmoid function converges to its bounds. Figure 5.2 shows
the graph of a sigmoid function with (u, ℓ,m) = (1, 0, 1).

As the slope parameter is varied, the shape of the sigmoid function changes. When the slope is large or
“steep”, the sigmoid will begin to look like the threshold function. When the slope is near 0, it will begin to
look more like a linear function.10

5.5 Non-local activation functions

The activation functions we have discussed thus far are local in the sense of being computable based on
information available at the neuron, by way of its connections to other neurons. However, in some cases a
neuron’s activation can only be computed based on the state of other neurons in a group.11 These are often
called “layers”, as in a type of node layer. In Simbrain this is represented by drawing a border around the
neurons (these structures are called neuron groups in Simbrain), as in figure 5.4.

Figure 5.4: A winner-take-all and a softmax activation function. All weight strengths are 1 and the con-
nections are one-to-one so the weighted inputs are just the input values visible in the figure. The boundary
around the nodes in the “neuron group” indicates that they are all taken into consideration when computing
the activations.

A simple example is a winner-take-all activation function like the one shown in the left panel of figure
5.4. In this case all the weighted inputs to a group of neurons are computed, and the activation for the

9In Simbrain this function is captured by the “Sigmoidal (Discrete)” update rule. Different implementations of the function
can be selected within Simbrain.

10When training neural networks, the slope parameter is not generally modified. However, changes to the weights attaching
to a sigmoid are trained, and these are effectively equivalent to the slope parameter. Thus, with training, a sigmoid neuron can
come to behave more or less like a threshold or linear function.

11This is not biologically realistic, since a real neuron can only do things based on information available to it locally, but
these functions often have useful formal and mathematical properties, and can in some cases be justified as valid simplifications
or approximations of network activity.

CHAPTER 5. ACTIVATION FUNCTIONS 55

node which received the greatest weighted input (in this example, the node on the left) is set to a prescribed
winning number like 1, and activations for the rest of the nodes are set to a losing number, usually 0.

ak = f(nk) =

{
win value if nk = max(n1, n2, . . . , nm)

0 otherwise

This obviously requires considering every neuron in the group, even if they are not directly connected
to each other. Although this is unrealistic, it is a reasonable approximation of a network of inhibitory and
excitatory connections (compare the discussion of pools in an IAC networks in section 2.4).

Another well-known example of a non-local activation function is the softmax activation function, which
is often used for classification tasks. It converts the weighted inputs to a group of nodes into a probability
distribution over those nodes–that is, a set of values all of which are between 0 and 1 which sum to 1. These
activations are often interpreted as probabilities associated with a group of class labels. For example if a
softmax layer of a network trained to recognize visual inputs has nodes for cat, dog, and raccoon, then the
softmax activations might be .05, .9, and .05, indicating a 5% probability that the input pattern represents
a cat, a 90% probability that it represents a dog, and a 5% that it represents a raccoon.

The formula for softmax is this:

ak = f(nk) =
exp (nk/T)

N∑
j=1

exp (nj/T)

That is, for each neuron k in the softmax layer, its activation ak is computed as follows. The weighted input
nk is exponentiated12, and these exponentiated values are normalized (the summation on the bottom, which
shows why the softmax activation function requires information about all nodes in a layer, and is thus part
of a neuron group in Simbrain). T is a temperature parameter which scales the weighted inputs before they
are exponentiated, and is discussed further below.

The exponentiation step increases the influence of larger input values, producing a more sharply peaked
distribution. The exponential function is shown in figure 5.5. Think of the x-axis as weighted input. As
weighted input gets bigger, the exponential gets much bigger, so that larger values are accentuated. An
example is shown in the right panel of figure 5.4. Note how the inputs are 3, 2, and 1, but the softmax
probabilities are .7, .2, and .1. The exponentiation step has accentuated the difference between the inputs.

Figure 5.5: The exponential function from -5 to 5. As can be seen, negative and smaller values are more or
less flattened to being near 0, but positive values grow rapidly and are in a sense accentuated.

The temperature T is a scaling parameter that controls how sharply peaked the softmax distribution is
(see figure 5.6). When T = 1 it is a default softmax function. For high temperature values, larger than 1,
the softmax distribution becomes more dispersed. Think of a “hotter” more active system, doing slightly
more random or reckless things. In classification tasks, this can be interpreted as less confidence about

12In the context of softmax layers weighted inputs–the raw inputs to the layer–are sometimes called “logits”, in reference to
the concept of a logit in statistics (https://en.wikipedia.org/wiki/Logit), which is a quantity that can can take on any value
from negative to positive infinity, and which is then transformed into a probability.

https://en.wikipedia.org/wiki/Logit

CHAPTER 5. ACTIVATION FUNCTIONS 56

the classification. For small temperature values between 0 and 1 the distribution becomes more sharply
peaked. Think of a “cooler” more restrained system. In a classification task this can be interpreted as
more confidence about the predictions. One application of temperature is to large language models (chapter
17), where turning the temperature up can encourage the system to produce less predictable responses and
turning it down can lead it to rely more on its training data.

Figure 5.6: Softmax for relatively low, medium, and high temperatures of .05, 1, and 3, respectively. At lower
temperatures the probability distributions over nodes is more sharply peaked and at higher temperatures it
is more spread out.

5.6 Exercises

All of these exercises can be tested using a simple network of 3 nodes connected to one node, and adjusting
the output node as appropriate. The 3 input nodes must be clamped.13

1. Consider the network shown in Fig. 5.1. We want to determine the weighted input to node 4 shown
on the right-hand side of the network, i.e. we want the value of n4. First we identify the values for the
activations of the input nodes, the weights, and the bias on node 4.

The activations on the input nodes: (a1, a2, a3) = (−1,−4, 5)
The weights: (w1,4, w2,4, w3,4) = (−1, 1, 1)
The bias: b4 = 0

Next, we substitute these values into the formula for weighted input:

n4 =

3∑
j=1

ajwj,4 + b4 = a1 · w1,4 + a2 · w2,4 + a3 · w3,4 + b4 = (−1)(−1) + (−4)(1) + (5)(1) + 0 = 2

The weighted input to node 4 is 2, Answer: n4 = 2.

2. Suppose we have the same network as in exercise 1, except b4 = 1. What is the weighted input to
node 4? Answer: n4 = 3.

3. Suppose again that we have the same network as in exercise 1 except this time the activations are
(a1, a2, a3) = (0, 0, 0). What is the weighted input to node 4? Answer: n4 = 0.

13A clamped node does not get updated, it just has a fixed activation; if the input nodes were themselves linear or had some
other activation function, then they would, for example, immediately go to 0 at every update, because the weighted input to
the input nodes is 0.

CHAPTER 5. ACTIVATION FUNCTIONS 57

4. Suppose some node, call it node k, has a threshold activation function described by (u, ℓ, θ) = (1, 0, 0.5)
(the same as in figure 5.2). And suppose nk = 2. What is the activation of node k? Since nk = 2, and since
2 > 0.5, the activation takes the upper value of 1. Answer: ak = 1.

5. Suppose node k has a piecewise linear activation function with (u, ℓ,m) = (10,−10, 1) and weighted input
nk = 4. What is the activation of node k? Answer: ak = 4.

6. Suppose node k has a piecewise linear activation function with (u, ℓ,m) = (1, 0, 1) and weighted input
nk = 10. What is the activation of node k? Answer: ak = 1.

7. Suppose node k has a ReLU activation function and weighted input nk = −10. What is the activation of
node k? Answer: ak = 0.

8. Suppose node k has a ReLU activation function and weighted input nk = 19. What is the activation of
node k? Answer: ak = 19.

9. Suppose node k has a sigmoid activation function with (u, ℓ,m) = (1, 0, 1). This is the sigmoid function
shown in Fig. 5.2. Consult that graph. And suppose the weighted input is 0.75 (nk = 0.75). What,
approximately, is the activation of node k? Find 0.75 on the horizontal axis and find the vertical coordinate
of the corresponding point on the graph. Answer: ak ≈ 0.9.

10. Suppose we have the same network as in exercise 9 except the weighted input is 0. What is the
activation? Answer: ak = 0.5.

11. Suppose node k has a sigmoid activation function with (u, ℓ,m) = (10, 0, 1) and suppose the weighted
input is 0 (nk = 0). What is the activation of node k? Answer: ak = 5.

12. Suppose node k has a sigmoid activation function with (u, ℓ,m) = (10, 0, 1) and suppose the weighted
input is −100 (nk = −100). What, approximately, is the activation of node k? Answer: ak ≈ 0.

13. This is a combined exercise that requires you to determine the weighted input and then the activation
for a node. Suppose we have a network with two input nodes (labeled 1 and 2) connected to a third node
(labeled 3).

The activations on the input nodes: (a1, a2) = (1,−1)
The weights: (w1,3, w2,3) = (−1, 1)
The bias: b3 = 1

And suppose node 3 has a ReLU activation function. What is the activation of node 3? First, we com-
pute the weighted input to node 3:

n3 = a1 · w1,3 + a2 · w2,3 + b3 = (1)(−1) + (−1)(1) + 1 = −1 − 1 + 1 = −1

Next, we apply the ReLU function, which clips negative values to 0, so that Answer: a3 = 0.

14. Suppose we have a network with two input nodes (labeled 1 and 2) connected to a third node (labeled
3):

The activations on the input nodes: (a1, a2) = (−1, 1)
The weights: (w1,3, w2,3) = (0, .5)
The bias: b3 = 0

And suppose node 3 has a piecewise linear activation function with (u, ℓ,m) = (2,−2, 1) What is the
activation of node 3? First, we compute the weighted input to node 3:

n3 = (−1)(0) + (1)(.5) + 0 = .5

CHAPTER 5. ACTIVATION FUNCTIONS 58

The weighted input is between the upper and lower bounds and so Answer: a3 = .5.

15. Compute activation for node 3:

The activations on the input nodes: (a1, a2) = (1, 1)
The weights: (w1,3, w2,3) = (0, 4)
The bias: b3 = 1

And suppose node 3 has a threshold activation function with (u, l, θ) = (10,−10, 1). Answer: a3 = 5.

16. Compute activation for node 5:

The activations on the input nodes: (a1, a2, a3, a4) = (1, 1,−1,−1)
The weights: (w1,5, w2,5, w3,5, w4,5) = (0, 0, 1, 1)
The bias: b5 = 0

And suppose node 5 has a threshold activation function with (u, l, θ) = (1,−1, 0). Answer: a5 = −1.

17. Suppose node k has a sigmoid activation function and consider three possible values for the weighted
input, i.e. nk = 0, nk = 2, and nk = 2.5. How can we design the sigmoid activation function so that the
activation for nk = 0 is 0.5 while the activation for nk = 2 and nk = 2.5 is far below 1? The key idea is
to decrease the slope of the sigmoid function thereby “stretching out” the S shape. First, we let u = 1 and
ℓ = 0. This forces the activation to be 0.5 when nk = 0 regardless of the slope m. Next, we set m = 0.0001.
The activation in response to nk = 2 is around 0.50020 and in response to nk = 2.5 is around 0.50025, both
of which are far below 1.

Chapter 6

Linear Algebra and Neural Networks
Jeff Yoshimi, Scott Hotton

In this chapter, we review some basic concepts of linear algebra with an emphasis on how they can be applied
to the study of neural networks. This can be viewed as a transition from the formal structure of single nodes
and weights, to the formal structure of lists and tables of nodes and weights. In particular, we consider
vectors and matrices, which allow us to describe the behavior of groups of nodes and weights in a compact
way.

Linear algebra also facilitates a powerful geometric framework for visualizing the structure and dynamics
of a neural network. The properties of a set of inputs and whether they can be properly classified is an
example of something that is more intuitively understandable when the input vectors are visualized as points
in a space. Chapter 5 notes that whenever the “play” button is pressed in Simbrain, some dynamical
process is simulated. The framework of linear algebra makes it possible to visualize the changing activations
of a set of nodes, or the changing strengths of a set of weights, as a moving point in a space. This approach
to thinking about neural networks uses dynamical systems theory, discussed in chapter 10, and can be used
to think about many features of neural network models in an intuitive way.1

6.1 Vectors and Vector Spaces

Linear algebra is the study of vector spaces. Vector spaces are abstract mathematical systems that turn
out to be extremely useful for describing the structure and dynamics of neural networks. A vector space
is a collection of objects called vectors along with mathematical operations that we can perform with the
vectors.2 For instance, we can add two vectors together to get another vector. There is also a type of
multiplication that can be performed between a vector and a scalar. The term “scalar” is used for those
numbers that are allowed to be multiplied with a vector. We will focus on the case where scalars are real
numbers, like 2, −1.2, or 5.9. If the scalars are the set of real numbers, then the vector space is called a
real vector space. We will only work with real vector spaces. A more formal definition for a vector space is
discussed in Sect. 6.14.

We will represent vectors as ordered lists of scalars.3 Each of the scalars in the list is called a component
of the vector. A list with 2 components is called an ordered pair. A list with 3 components is called an
ordered triple. More generally, a list with n components is called an n-tuple. We can refer to the members of
a vector in this sense as its “first component”, “second component”, etc. A vector in the sense of an n-tuple
is often written out as a comma-separated list of numbers surrounded by parenthesis. For example, here are

1For a quick demonstration of this way of visualizing network dynamics, try running the simulation highDimensionalPro-
jection.bsh. The dynamics of the network is visible in the projection component.

2You may have heard that vectors are geometric objects that have a magnitude and a direction. You may have seen them
represented by an arrow or directed line segment. These different points of view on vectors supplement rather than contradict
each other.

3Many classes of mathematical objects satisfy the formal definition of a vector space, and thus many objects can be vectors.
The ordered lists we consider here are an especially convenient type of vector.

59

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 60

four vectors:
(0, 0) (0, 1) (1, 0) (1, 1)

We sometimes adopt the convention of writing vectors using bold-faced lower-case letters, for example ai
for a vector of input values, t for a vector of target values, or a4 for the activation vector in the fourth node-
layer of a feed-forward network. By contrast non bold-faced, italic lower-case letters are usually reserved for
components of vectors, and the subscript indicates which component. For example, a2 could designate the
second component of an activation vector a.

When the components of a vector are written horizontally, from left to right, it is called a row vector.
The ordered pairs shown above are row vectors. The components can also be written out vertically, from top
to bottom, in which case the vector is called a column vector.4 Commas are usually not written in column
vectors because it is clear what the components are. For example, here are four column vectors:(

0
0

) (
0
1

) (
1
0

) (
1
1

)
The number of components in a vector can be any positive integer. If there is only one component, then

the vector is essentially just a scalar.
For any positive integer n, the set of all n-tuples forms a vector space. The integer n is called the

dimension of a vector space. For example, the set of all of ordered pairs of real numbers is a 2 dimensional
real vector space R2. The set of all ordered triples is a 3 dimensional real vector space R3. The set of all
possible activations for a network with 172 nodes is a subset of R172.

The components of a vector can be thought of as the coordinates of a point in Euclidean geometry. The
components of a vector can be used to locate a point by starting at the origin and moving parallel to each
axis by the amount specified by the corresponding component. To locate the point corresponding to the
vector (3, 4), for example, we move 3 units to the right along the horizontal axis and 4 units upwards along
the vertical axis. In this way a 2 dimensional real vector space can be thought of as an Euclidean plane (see
figure 6.1).5

For 2-dimensional spaces, finding your way around is a bit like using an “Etch a sketch” toy6, where you
move a tracing point around in a space using one knob for left-and-right (x-values) and one knob for up and
down (y-values). If you plot the activation space of two nodes in Simbrain and adjust the activations of the
two nodes, this analogy is useful for understanding what is happening.

The number of dimensions of the vector spaces that arise in the study of neural networks can be much
larger than 3. We we can not geometrically visualize these higher-dimensional spaces directly. To work
mathematically in these spaces, it is helpful to keep in mind that our starting point is the n-tuples, which
are just lists of numbers. From this standpoint, the 4 dimensional real vector space we work with is just the
set of all 4-tuples of real numbers, and the 5 dimensional real vector space we work with is just the set of all
5-tuples of real numbers. Here are some vectors in a 5 dimensional vector space:

(0,−1, 1, 0.4, 9) (−1, 2, 4,−3, 9) (0, 0, 0,−1,−1) (0,−1, 0,−1, 0)

We can keep going. The vectors that make up a 100 dimensional vector space are just lists of 100 numbers.
The vectors that make up a billion dimensional vector space are just lists of a billion numbers.

Real vector spaces with more than 3 dimensions cannot be seen directly, but objects in them can be
projected to lower dimensional real vector spaces where they can be visualized. We will discuss methods of
projection from spaces with more than 3 dimensions in Sect. 6.2.7

4The choice of whether to use a row or a column vector to represent an abstract vector is primarily a matter of convenience
or convention.

5There is a legend (probably fabricated, but pedagogically useful nonetheless) that the philosopher René Descartes came
up with his proof that given a point in the plane there are unique coordinates for that point (and given a pair of coordinates
there is a unique point in the plane) while observing flies on his ceiling. He noticed that the position of the flies on the ceiling
could be described by superimposing a kind of grid on the ceiling—for example: there’s a fly at (3, 4), 3 units to the right, and
4 units up; there’s a fly at (−2,−1), 2 units to the left, and 1 unit down; and there’s another at (4,−2), 4 units to the right,
and two units down (see figure 6.1).

6https://en.wikipedia.org/wiki/Etch_A_Sketch.
7Here again the Simbrain simulation highDimensionalProjection.bsh is helpful. When you run the simulation, a sequence

of points in a 25 dimensional space appears. Each point corresponds to a vector. If you hover the cursor over any one of the
points, you will see the list of 25 numbers (the 25 activation levels for the network) that correspond to that point.

https://en.wikipedia.org/wiki/Etch_A_Sketch

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 61

Figure 6.1: Each vector in a 2 dimensional vector space is associated to a point in the Euclidean plane by
treating the components of the vector as the coordinates of the point. Try to find the vectors (3, 4), (−2,−1),
and (4,−2).

6.2 Vectors and Vector Spaces in Neural Networks

Vectors are frequently used to describe lists of activations, weights, and other quantities associated with
neural networks.

Figure 6.2: A feed forward and recurrent network in Simbrain. Try to identify the dimensionality of the
activation space, input space, hidden unit space, output space, and weight spaces of each network. Left: A
feed-forward neural network with activations showing. Right: A 2-node recurrent network with activations
showing.

The activations of a neural network’s n nodes can be described by an activation vector with n com-
ponents, one for each activation value. For example, if we index the nodes of the feed-forward network in
figure 6.2 (Left) from the bottom to the top and left to right (as in figure 6.8), then that networks’ activation
vector is (−0.3, 0.6,−0.3, 0.5,−0.2, 0.6, 0.2). This is a vector in a 7 dimensional vector space. A vector space
of activation vectors is called an activation space. The feed-forward network in figure 6.2 (Left) network
has a 7 dimensional activation space.

Activation spaces are especially useful in studying recurrent networks. If we index the nodes of the
recurrent network in figure 6.2 (Right) from top to bottom (as in figure 6.8), then its activation vector is
(0.8,−0.7). This is a vector in a 2 dimensional activation space. As the network changes, its activations
change, and so we have a changing activation vector. We can picture this as a moving point in a 2 dimensional
space.

In addition to describing the state of all of a network’s nodes by an activation vector, we can describe

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 62

certain subsets of its nodes using activation vectors. In the feed-forward network in figure 6.2 (Left), for
example, we can describe the activations of the input nodes as an input vector (−0.3, 0.6) in a 2 dimensional
input space. We can describe the activations of the hidden nodes as a vector (−0.3, 0.5,−0.2) in a 3 dimen-
sional hidden unit space. We can describe activations of the output nodes as an output vector (−0.6,−0.2)
in a 2 dimensional output space. Recall from chapter 1 that a table of data is a simple environment for a
neural network. This table will sometimes contain a set of input vectors, which can be thought of as a set
of points in the input space of a network. It can also contain a set of target vectors, which describes how
we want the network to respond to input vectors by producing specific output vectors. Many problems in
neural network theory can be understood in terms of properties of the input and output space.

Vectors and matrices are sometimes referred to in bold-faced letters, with a subscript indicating more
information. So an input vector can be a1 for node layer 1 or just ainput

We can also talk about vectors of weights, or weight vectors, which exist in weight spaces. The
feed-forward network in figure 6.2 has 12 weights. The strengths of those weights is given by the vector

(−2, 1,−1, 0.9,−1,−1.2, 1,−2, 0.7,−1, 2, 2.1)

in a 12 dimensional weight space (see figure 6.8). The recurrent network has 4 weights whose current strengths
is given by the vector (1.1, 2, 1,−2) in a 4 dimensional weight space. In the chapters on supervised and
unsupervised learning (chapters 12 and 9), we will see that it can be helpful to think of learning in terms
of movement in a weight space. As the weights of a network are changed or “trained” we have a moving
point in weight space. Points in weight space can be associated with an error value, which makes it possible
to define an error surface over a weight space. Supervised learning can often be understood as finding low
points on this error surface.

It can also be useful to talk about a fan-in weight vector (the list of weight strengths for the set of
weights attaching to a node), and a fan-out weight vector (the list of weight strengths for the set of
weights exiting a node). A version of the networks in figure 6.2 with zeroed out activations, labeled node
indices, and weight strengths is shown in figure 6.8 below. Some sample weight vectors for these networks
are:

Feed forward network, neuron 3 fan-in (1,−2)

Feed forward network, neuron 3 fan-out (−2, 0.9)

Feed forward network, neuron 7 fan-in (0.9,−1,−1.2)

Recurrent network, neuron 2 fan-in (1,−2)

Some of these weight vectors have 2 components, some have 3 components. Of course for larger networks,
fan-in and fan-out vectors can be in higher dimensional weight spaces.8

6.3 Dimensionality Reduction

How can we visualize sets of vectors that have more than three components? For example here are nine
vectors in a 6 dimensional space:

(2, 0, 0, 0, 0, 0), (0, 0, 2, 0, 0, 0), (0, 0, 0, 0, 2, 0)
(1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 0, 1, 1)
(1,−1, 0, 0, 0, 0), (0, 0, 1,−1, 0, 0), (0, 0, 0, 0, 1,−1)

We can’t directly visualize these vectors since we only live in a 3 dimensional world but we can project them
down to a lower dimension. Figure 6.4 shows the projection of these vectors down to 2 dimensions. Each
vector above corresponds to one point in the figure. Notice that by visualizing the points we can immediately

8Notice that the fan-in weight vectors for the hidden units of the feed-forward network have the same number of dimensions
as the input vectors. The input vectors and hidden layer fan-in weight vectors live in the same vector space. This fact is useful
sometimes.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 63

see a structure that is very hard if not impossible to see just by looking at the list of vectors. This is how
we deal with unwieldy high dimensional data.

A projection is a mapping from a higher dimensional space (sometimes called the “upstairs” space or
“total space”) to a lower dimensional space (sometimes called the “downstairs” or “base” space).9 A method
for producing a projection is a dimensionality reduction technique. We are all familiar with projections
insofar as we have seen globes, which are 3 dimensional objects, projected down to paper, which are 2
dimensional objects.

There are different ways of projecting globes to pages, each of which introduces distinct types of distor-
tions. Even so, we still generally get a sense of what of the objects’ shapes are. The geometric relationship
between various regions in 3 dimensional space can be seen by just looking at a 2 dimensional map. For
example, in a standard Mercator projection of the Earth (figure 6.3), Antarctica and Greenland look huge,
and things are especially distorted at the two poles, farthest away from the equator.

Figure 6.3: The Earth’s surface in 3 dimensional space is rendered as a flat, 2 dimensional surface by the
Mercator projection method. Most of the distortion produced by the projection occurs near the Earth’s
poles so small regions around the poles are cropped out from the maps. Most of the continents and oceans
undergo little distortion by the projection which made it a popular projection method for making maps of
the Earth.

We can still use the projection to get a sense of the layout of the Earth. How are we able to do this? One
reason is that certain topological properties of the Earth’s surface–that is, properties involving continuity–are
preserved by the projection. For example, when we see on the map that Los Angeles and San Francisco are
on the same coast, then we know we can sail along the coast to get from one city to the other. San Francisco
is closer to Merced than it is to Los Angeles, but when we see on the map that Merced is not on the coast,
then we know that we can not sail from San Francisco to Merced. Even though distances on the map have
been distorted slightly we can still use it to make travel plans.

We can use the method of projection to visualize even higher dimensional spaces that can not be seen
by human eyes. A somewhat exotic example is shown on the right of figure 6.4. This is the projection of a 2
dimensional surface in a 4 dimensional space down to a 3 dimensional space. The 4 dimensional space is the
state space for a spherical pendulum, and the surface is the set of all states of the pendulum that have the
same energy and angular momentum. We can see it resembles the surface of a donut with a groove along
the side.

Another example is shown on the left of figure 6.4. It consists of three circles that intersect at a single
point (called a “bouquet of three circles”). In this example, the three circles are perfectly round and lie
in three mutually perpendicular planes, but we can not see this bouquet of circles directly with our eyes.
We also can not see, directly with our eyes, that this bouquet of circles forms a symmetrical figure in a 6
dimensional space. Although the projection distorts the figure a little and we lose some of the roundness

9This is not a formal definition but it will suffice for our purposes. Also note that we focus on vector spaces, but the concept
of a projection (and of a dimensionality reduction technique) applies to other types of spaces besides vector spaces.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 64

of the circles in the projected image, we can still see the symmetry of the overall figure. The software that
was used to do this projection is part of Simbrain (the “projection plot”). This plot can be used to visualize
structures in the higher dimensional spaces associated with many neural networks.

Figure 6.4: (Left) The projection of a symmetrical curve in a 6 dimensional space so that we can see its
symmetry. The nine vectors listed at the beginning of section 6.3 are shown as nine large blue dots. (Right)
A symmetrical surface in a 4 dimensional space is projected so that we can see its symmetry.

There are many different methods for projecting data from high dimensional spaces to lower dimensional
spaces, and the field as a whole is called “dimensionality reduction”. Each projection method has its pros
and cons, and each one introduces different forms of distortion. But by using several such projections one
can often get a good sense of the structure of some high dimensional data.10

6.4 The Dot Product

The dot product is a simple but important function defined for pairs of vectors in a vector space.11 The dot
product is a different kind of function than scalar multiplication (the dot product and scalar multiplication
are defined in section 6.14). They both take two arguments but the types of arguments they take are a little
different. The dot product is a function of two vectors that have the same number of components, whereas
scalar multiplication is a function of a scalar and a vector. The dot product gets its name from the fact it
is represented by a large dot: •. It is also common to say that we are “dotting” one vector with another.12

The dot product is computed by multiplying each of the corresponding components of a pair of vectors,
and summing the resulting products. For example

(1, 2, 3) • (4, 5, 6) = 1 · 4 + 2 · 5 + 3 · 6 = 32

(0, 0, 0) • (4, 5, 6) = 0 · 4 + 0 · 5 + 0 · 6 = 0

(2, 3,−1) • (−1, 1, 1) = 2 · (−1) + 3 · 1 + (−1) · 1 = 0

(1, 1, 1, 1, 1) • (1, 1, 1, 1, 1) = 1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 5

Clearly the product of any vector with the zero vector (the vector whose components are all 0) is 0.
However, the dot product of two non-zero vectors can also be 0. When the dot product of two non-zero
vectors is 0 then we say the vectors are orthogonal (perpendicular) to each other. It might be hard to tell
right away that the vectors (2,−1, 1,−3, 1, 1), and (1, 2, 3, 1, 1,−1) are orthogonal to each other, but a quick
calculation shows us that it is true:

(2,−1, 1,−3, 1, 1) • (1, 2, 3, 1, 1,−1) = 0

10The three methods used in Simbrain are described here: http://hisee.sourceforge.net/about.html. Other meth-
ods of projection are available in this free Matlab toolbox: http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_

Dimensionality_Reduction.html.
11The dot product is a member of a more general class of functions known as “inner products”. They are used to specify

geometric relationships between vectors.
12A useful interactive visualization of the dot product is available at http://www.falstad.com/dotproduct/.

http://hisee.sourceforge.net/about.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://www.falstad.com/dotproduct/

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 65

Figure 6.5: Simple feed-forward network with nodes labeled. The dot product can be used to compute the
weighted inputs to node 4.

Notice that we can concisely represent the weighted input (see chapter 5) to a node using the dot product.
The weighted input is just the dot product of the activation vector with the fan-in weight vector of the output
node, plus a bias term. An example is shown in figure 6.5. The activation vector for nodes 1, 2, and 3 is
(−1, −4, 5) and the weight vector for node 4 is (−1,−1, 1) so the net-input to node 4 is:

n4 = (−1, −4, 5) • (−1,−1, 1) + 0 = 1 + 4 + 5 + 0 = 10

These visualizations help show that if we are doing “distance” on a unit hypersphere, then the dot
product behaves like an inverse metric: it reaches a maximum of 1 when vectors point in the same direction,
and becomes increasingly negative as they point in opposite directions. The negative cases are especially
important when thinking of a weight vector as orthogonal to a decision boundary in a network with threshold
units.

6.5 Other vector comparison methods

There are a number of ways the dot product can be used to give us a sense of how close or far apart two
vectors (such as input vectors, activation vectors, etc.) are to each other.

One way is to begin by normalzing the two vectors (that is, we divide each of the vectors by their
Euclidrean norm to get two vectors with unit norm; see section 6.6). We then dot the normalized vectors
with each other.13

cos(θ) =
u

||u||
• v

||v||
=

u • v
||u|| · ||v||

(6.1)

This normalized dot product is known as cosine similarity. It is a commonly used measure of similarity
that is independent of the vector’s magnitude. The number θ is the angle between u and v. The cosine
of the angle between the vectors tells us the extent to which the vectors point in the same direction. The
cosine similarity of two vectors can be any number in the interval [−1, 1]. If the vectors point in exactly the
same direction then the angle between them is 0 and their cosine similarity 1. If the vectors are orthogonal
to each other then the angle between them is 90o and their cosine similarity is 0. If the vectors point in
directly opposite directions then the angle between them is 180o and their cosine similarity is −1.14

13The symbol || · || denotes the Euclidean norm.
14In some implementations the quantity is bounded between [0, 1]. Occasionally, cosine distance is used, which is 1− cos(θ).

In this case nearly proportional vectors will have a cosine distance of nearly 0, while very dissimilar vectors will have a cosine
distance of about 1.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 66

Note that we do not need to know the angle θ to compute the cosine similarity of two vectors.15 Cosine
similarity can be computed for any pair of vectors in the same vector space no matter how many dimensions
the vector space has, although it does take more time to compute it in higher dimensions. Even though the
left hand side of equation (6.1) is only a function of the angle between the vectors the cosine similarity of
any two nonzero vectors, u and v, can be computed from the expression on the right hand side of equation
(6.1).

Cosine similarity is widely used in text analysis and natural language processing, especially in applications
such as document similarity and information retrieval (see chapter 8). This is because it compares the
direction of two high-dimensional vectors independently of their magnitude. As such, it captures similarity
in content rather than length or scale, which is ideal in contexts where longer documents might contain
similar themes as shorter ones.

Two other related measures are covariance and correlation. In this context it can be helpful for us to
consider the two vectors as sequences of values for two variables. Covariance and correlaation measure how
closely the two variables vary together about each of their respective means. If, at each moment in time,
the variables are usually either both above or both below their mean values then we say the variables are
positively correlated with each other. When the variables are positively correlated and we see that the value
for one of them is above average then the value for the other variable is probably also above average. On
the other hand if both variables are usually on opposite sides of their mean values then we say the variables
are negaatively correlated with each other. When the variables are negatively correlated and we see that
the value for one of them is above average then the value for the other variable is probably below average.
If the variables are neither positively or negatively correlated then we say they are uncorrelated.

Covariance and correlation have exact mathematical expressions. Let x and y stand for the two variables.
A value for each of the variables can be obtained at each moment in time by making a measurement or by
sampling from a large population. However we obtain values for x and y we get two sequences of values
for these two variables. This is called the raw data for the variables. The two sequences of values for the
variables can be expressed as vectors:

x = (x1, . . . , xn) and y = (y1, . . . , yn) (6.2)

To compute the covariance of x and y we first subtract the mean value of each vector from its components.
We let µx be the mean of x and µy be the mean of y. This gives us two vectors whose components are called
the centered data for the variables.

x̃ = (x1 − µx, . . . , xn − µx)

ỹ = (y1 − µy, . . . , yn − µy) (6.3)

The covariance is the dot product of the vectors for the centered data divided by n.16

Cov(x,y) =
x̃ • ỹ
n

(6.4)

The Pearson correlation coefficient is obtained from the covariance using the standard deviations of the
variables. The standard deviation, like the mean, is a statistic intended to describe the raw data. It describes
how spread out the raw data is. The standard deviation for x and y are defined as:

σx =

√√√√ 1

n

n∑
j=1

(xj − µx)2 and σy =

√√√√ 1

n

n∑
j=1

(yj − µy)2 (6.5)

The Pearson correlation coefficient is the covariance divided by the product of the standard deviations.

Corr(x,y) =
Cov(x,y)

σx σy
(6.6)

15In fact in modern Euclidean geometry angles are formally defined in terms of the dot product.
16Sometimes n− 1 is used instead of n.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 67

It is a number in [−1, 1]. If Corr(x,y) is close to 1 then x and y are highly positively correlated. If Corr(x,y)
is close to −1 then x and y are highly negatively correlated. If Corr(x,y) is close to 0 then x and y) are
nearly uncorrelated.

We can also write the standard deviation in terms of the centered data:

σx =

√
x̃ • x̃
n

=
||x̃||√
n

and σy =

√
ỹ • ỹ
n

=
||ỹ||√
n

(6.7)

We can substitute the formula for the covariance in equation (6.4), and the formulas for the standard
deviations in equation (6.7) into the right had side of equation (6.6).

Corr(x,y) =

(
x̃ • ỹ
n

)
(
||x̃||√
n

||ỹ||√
n

) =
x̃ • ỹ

||x̃|| · ||ỹ||
(6.8)

So we can see that the Pearson correlation coefficient of the raw data is the same as the cosine similarity of
the centered data. The correlation of x and y corresponds to the extent to which x̃ and ỹ point in the same
direction.

Geometrically, the centered data x̃ and ỹ, are the orthogonal projections of the raw data x and y to
the subspace orthogonal to the vector (1, . . . , 1). This subsapce has dimension n− 1. This projection never
increases the angle between x and y but it can descrease angle between them. In a sense, there are fewer
ways they can point away from each other when we reduce the number of dimensions by 1.

The vectors x and y can represent different physical quantities whose numerical value depends on the
choice of units of measure. By centering the data before computing the cosine similarity we avoid spurious
differences introduced by the units of measure. For example, suppose we are measuring the germination
time of seeds as a function of temperature. If we measure temperature in Celsius and time in seconds, we
will obtain a different numerical value for the cosine similarity of the raw data than if we measure time in
hours. Whereas the value of the Pearson correlation coefficient remains the same regardless of such changes
in the unit of measure.

These four measures—dot product, cosine similarity, covariance, and correlation—are closely related.
They all associate pairs of vectors with scalars. They can be distinguished by whether they center the
vectors (by subtracting the mean) and /or scale them (by dividing dividing by the “spread” of the data)
before comparison. The dot product operates on the raw data directly, while the other three measure
transform the raw data in different ways to faciltate comparisons between data with different means or
overall scales.

• Dot product: not centered, not scaled.

• Cosine similarity: not centered, scaled.

• Covariance: centered, not scaled.

• Correlation: centered, scaled.

It’s worth noting that different comparison measures often arise from different approaches to the data.
The easiest way to see this is by considering a table. Recall from chapter 7 that tables are commonly used
in neural networks and the columns often describe some features of interest.

Let us consider this table of data.

Individual Height (ft) Weight (lb)
1 5.0 120
2 5.5 180
3 6.5 210
4 6.0 150
5 5.8 170

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 68

There are two main ways to think geometrically about the numbers in this table. One way is to let the
ordered pairs of heights and weight in the five rows of the table be the coordinates of five points in R2.
Since this space only has 2 dimensions we can visualuze these points. In this point of view the heights and
weights being positively correlated means that these five points are nearly collinear to a line with positive
slope in the plane. When the heights and weights are negatively correlated it means that the points are
nearly collinear to a line with negative slope in the plane. When the heights and weights are uncorrelated
they usually form a cloud of points in R2

The left panel of figure 6.6 shows the five points in R2. The Pearson correlation coefficint for them is
about 0.8. They are roughly collinear to a line with positive slope.

4.5 5.0 5..5 6.0 6..5 7.0
100

120

140

160

180

200

220

1

2

3

4

h

w

u

5

h

w

6 12 18 24 30

7
o

Figure 6.6: (left) The height and weight coordinates for the five individuals in the table. The odd numbered
points are nearly collinear to a line with a slope of about 60 while the even numbered points are more spread
out. (right) The vector h points to the right in the horizontal direction while the vector u points in the
upward vertical direction. The length of u is about 3.5 times the length of h and the length of w is about 8
times the length of u. The cosine similarity of h and w is about 0.9925 and the angle between h and w is
about 7o.

The other main way to think geometrically about the numbers in the table is to let the columns for the
heights and weights be the coordinates for two points in R5. Since this space has 5 dimensions we can not
visualize these points directly but we do have the advantage in this case that there are only two points so
they have to be contained within a 2 dimensional subspace of R5. We represent the heights with the vector

h = (5.0, 5.5, 6.5, 6.0, 5.8)

and the weights with the vector
w = (120, 180, 210, 150, 170)

For the purpose of visualzing the geometrical relationship between h and w we define another vector

u = (−24.8187, 20.6994, 21.7356, −23, 7825, 2.0103)

It can be checked that to three digits:

h • u ≈ 0 and w ≈ 28.964h + u

so that {h,u} is nearly orthogonal basis for the span of {h,w}. The vector w is about 30 times as long as
the vector h. This is shown in the right panel of figure 6.6.

. The cosine similarity of the data gives us the cosine of the angle between the two points as measured
from the origin of R5.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 69

In neural network contexts, we frequently focus on the rows of such a dataset and compare them, for
example considering pairs of input vectors or activation vectors to assess their similarity. Often the dot
product or cosine similarity are used to see if they point in the same direction in an input space or activation
space. Often we have many rows and thus many points to think about, a cloud points in an abstract space.
By contrast, when computing covariance or correlation, we typically work with the columns, of such a dataset,
comparing features like weight and height. We then compute the correlation or covariation a single time,
getting a single value out of the pair of vectors. Or if we have many columns with many features (suppose
we also had BMI, resting heart rate, and age in the table above), we might compute multiple correlations
or covariances. So in a sense dot product and cosine similarity are more row oriented, and correlation and
covariance are more column oriented.

Given a set of vectors, we can compute all their pairwise relationships using the methods above. Cor-
relation matrices and covariances are well known for this purpose. We refer to these generally as vector
comparison matrices. These matrices serve as tools for exploring similarity, alignment, or statistical
dependence among sets of vectors. It is very helpful to be able to interpret these. They also function as
processing elements of some networks, most famously the transformer architecture used in large language
models, where the self attention matrix compares vector representations of all the tokens in a context window
(see chapter 17).

Here is an example using pairwise dot products (what is sometimes called a “Gram matrix”). Suppose
we have three vectors in R3:

v1 =

1
0
1

 , v2 =

0
1
1

 , v3 =

1
1
0

We can construct a dot product matrix by computing every pairwise dot product:

v1 v2 v3

v1 v1 · v1 = 2 v1 · v2 = 1 v1 · v3 = 1
v2 v2 · v1 = 1 v2 · v2 = 2 v2 · v3 = 1
v3 v3 · v1 = 1 v3 · v2 = 1 v3 · v3 = 2

So we get

=

2 1 1
1 2 1
1 1 2

This matrix shows, for instance, that v1 · v2 = 1, indicating moderate alignment between those two

vectors, and that each vector has a dot product of 2 with itself (its squared length).
In Simbrain there is a tool that is often useful for comparing a set of vectors to itself in all pairwise

combinations, using any of the methods mentions in this section. It is shown in figure 6.7.

6.6 Vector Spaces as Metric Spaces

A vector space can have a metric, which is a way to define the distance between any two points. The usual
metric for a real vector space is the Euclidean metric, which can be expressed in terms of the dot product.
The Euclidean metric uses the concept of a norm, denoted by double bars || · ||, which measures the “length”
of a vector. Specifically, the norm of a vector x is the square root of the dot product of the vector with itself:
||x|| =

√
x • x. With this metric the distance between any pair of vectors in Rn is:

x = (x1, x2, . . . , xn) y = (y1, y2, . . . , yn)

is:

||x− y|| =
√

(x− y) • (x− y) =

√√√√ n∑
j=0

(xj − yj)2

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 70

Figure 6.7: A plot in Simbrain that allows a set of vectors (here labeled “A”, “B”, etc. They are vectors that
correspond to flattened pixel images of letters) to be compared using various vector comparison methods.
Any set of vectors can be used to create this kind of plot. The diagonals generally show maximal values for
similarity measures, since vectors are on most measures maximally similar to themselves.

There are many metrics for every vector space but usually we use the Euclidean metric.
The upshot of this is that we can interpret the vector spaces associated with neural networks–activation

spaces, input spaces, weight spaces, etc.–as giving us a sense of how far apart relevant vectors are, and thus
how similar the things they represent are. Points nearby one another in an input space correspond to similar
inputs: similar smells, similar visual inputs, similar words relative to a word embedding (chapter 8), etc.
Points nearby one another in a weight space are similar configurations of weights. These interpretations
are often emphasized in analyses of neural networks (for example, see chapter 15), and in fact the spaces
associated with neural networks are sometimes called “similarity spaces”. An example which illustrates the
importance of this way of thinking is figure 9.4.

6.7 Matrices

Another object studied in linear algebra is a matrix, which is a rectangular array of numbers arranged into
rows and columns: basically a table of values. Here is an example of a matrix:

1 9 7
5 3 2

0.3 −1 0
0 −0.4 0

It is conventional to describe matrices by stating the number of rows and columns they have, in that order.
The example above is a 4 × 3 matrix because it has 4 rows and 3 columns.17 This is also called the shape
of a matrix. Each row of a matrix is called a row vector and each column is called a column vector. The
matrix above has four row vectors and three column vectors.18

17The notation for vectors typically includes a comma-separated list of the vector’s components. The notation for matrices
typically does contain not commas. A matrix’s components are only aligned into rows and columns without any extra characters
to separate them. Otherwise we think of vectors as special cases of matrices. A vector with n components can be represented
as either a 1× n matrix or as an n× 1 matrix. So far we have been representing vectors as 1× n matrices.

18Note that vectors are matrices and matrices are vectors! As already noted, vectors are a special kind of a matrix, a matrix
with one row or one column. Conversely, matrices are technically a kind of vector, since they satisfy the formal definition of
a vector (they exist in vector spaces called “matrix spaces”). However, it will be easier for us to follow standard practice and
treat these as separate kinds of mathematical objects.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 71

Figure 6.8: Feedforward and recurrent networks with nodes labelled, and weight strengths shown. Each
weight layer of the feedforward network and the weights of the recurrent network can be associated with
weight matrices.

We adopt the convention of writing matrices using bold-faced upper-case letters, for example W or R.
By contrast, non bold-faced, italic lower-case letters are reserved for entries in a matrix, and subscripts
indicate which row and column. For example w2,3 could be the scalar at the second row and third column
of a 2 × 3 matrix W.19 In the matrix above, for example, w1,3 = 7

6.8 Weight Matrices

Matrices are often used to represent the weights of a network. This facilitates a compact way of describing
many of the computations involved in updating a neural network. The weights of a neural network can be
represented by a matrix by labeling the rows and columns of a neural network with indices 1, . . . , n for rows,
and 1, . . . ,m for columns. Then we can represent the strength of a weight from node j to node k as the
value in the jth row and kth column of a weight matrix.20 This implies that a source-target weight matrix
representation of a set of weights will have as many rows as source neurons and as many columns as target
neurons.

We first consider weight layers in feedforward networks. Each weight layer of a feedforward network can
be represented by its own weight matrix Wi,j where i is the source node layer and j is the target layer. For
example, W1,2 or Winput,hidden is the matrix connecting the input node layer to the hidden node layer on

19In physics and mathematics it would be more conventional to use upper-case letters like W2,3 of the matrix W for this
purpose, but we here follow more standard conventions in discussions of neural networks.

20 This can be called a “source-target” representation, because rows are associated with source neurons and columns are
associated with target neurons. A “target-source” representation can also be used, where rows are associated with target neurons
and columns are associated with source neurons. One could also refer to this as a distinction between weight representations
Wi,j and Wj,i where we assume that one reads “i to j” either way. Though source-target is in many ways more intuitive
to think about, the target-source representation is more common in many contexts, where a weight matrix is thought of
as a linear operator transforming column vectors. It is probably an industry standard in machine learning. Thus you are
advised to be familiar with both approaches. There is some disciplinary variance on which representation to use. According
to wikipedia, “The [source-target] definition is commonly used in graph theory and social network analysis (e.g., sociology,
political science, economics, psychology). The [target-vector representation] is more common in other applied sciences (e.g.,
dynamical systems, physics, network science) where A is sometimes used to describe linear dynamics on graphs” https:

//en.wikipedia.org/wiki/Adjacency_matrix#Directed_graphs.

https://en.wikipedia.org/wiki/Adjacency_matrix#Directed_graphs
https://en.wikipedia.org/wiki/Adjacency_matrix#Directed_graphs

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 72

the left of figure 6.8. The column and row headings are shown in bold text and match the node labels in
6.8. Notice that there are as many rows as input neurons and as many columns as hidden layer neurons.
You can see, for example, that the weight w2,4 from node 2 in the input layer to node 4 in the weight layer
is in the row labeled 2 and the column labeled 4: -1. On the right is a more standard matrix representation
of W1,2.

3 4 5
1 1 0.7 2
2 −2 −1 2.1

(
1 0.7 2
−2 −1 2.1

)
Notice that columns of the weight matrix correspond to fan-in weight vectors for the hidden layer (rows
correspond to fan-out). This implies that you can compute weighted inputs at the hidden layer by the dot
product of an input vector and each column, a topic we discuss next. Regardless convince yourself you can
see the link between fan-in weight vectors and columns.

As an exercise, see if you can produce the weight matrix representation for W2,3 or Whidden,output. Hint:
it has 3 rows and 2 columns.

Now the recurrent case, starting with the recurrent network shown in figure 6.8. Here the source and
target neurons are the same and so the weight matrix, which we can call Wrecurrent, is square: it has as
many rows as columns. To fill it out we follow the same procedure, going from source label to target label
and finding the corresponding entry. For example, w1,2 is the weight from node 1 to 2, and is thus in the
first row, second column of the matrix. Confirm the values match up:

1 2
1 2 −.5
2 −1 1.2

(
2 −.5
−1 1.2

)
In a weight matrix for a recurrent network diagonal entries correspond to connections from a node back to
itself. Also note that fan-in weight vectors still correspond to columns. The first node has fan-in weights of
-2 and 1, the second has fan-in weights of .5 and 1.2.

Figure 6.9: A sparse recurrent network, where most of the possible connections do not exist, so that in its
matrix representation most entries will be 0. In this network red weights have a strength of 1 and blue
weights have a strength of -1.

Figure 6.9 shows another example, that shows what we do when some links are missing. If a weight does
not exist, it is represented by a 0 in the corresponding matrix. Here is its representation:

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 73

1 2 3 4
1 0 0 0 1
2 −1 0 0 0
3 1 0 0 0
4 0 0 0 −1

0 0 0 1
−1 0 0 0
1 0 0 0
0 0 0 −1

Now let’s check your understanding: there are 4 nodes and thus the matrix is 4-by-4. There are two positive
weights and two negative weights, and there are two positive entries and two negative entries in the table.
Node 4 is self-connected and the fourth diagonal entry is non-zero. Nodes 1 and 4 have two weights in their
fan-in and those two columns have two entries.

In the special case where most of the entries in a weight matrix are 0, the matrix is called a sparse
matrix. The matrix representing the weights in figure 6.9 is sparse. A sparse matrix is contrasted with
dense matrix, where most of the entries are non-zero. Really these are two ends of a continuum described by
a number called sparsity, which ranges from 0 to 1, and where higher values are more sparse. The sparsity
of a matrix is obtained by counting how many zero entries the matrix has and dividing by the total number
of entries. If all of the matrix entries are 0 then the sparsity of the matrix is 1. If half of the entries are 0
then the sparsity is .5. If none of the matrix entries are 0 then the sparsity of the matrix is 0. The matrix in
the table above has 16 entries, 12 of which are 0, so its sparsity is 12/16 = 3/4 = .75. Sparse weight matrices
represent sparsely connected networks, where only a few of the possible connections between relevant nodes
exist (recall that a matrix representation of a network uses 0 to represent the absence of a connection).
Dense matrices are used to represent densely connected networks. The word “dense connection” or “dense
weight layer” in this context often implies a sparsity of 0, that is, an “all-to-all” or “fully connected” set of
weights between relevant nodes.

6.9 Matrix Multiplication (Part 1)

In this section we begin a discussion of matrix multiplication, where two matrices are multiplied by one
another. There is nothing fundamentally difficult about this operation: it is just a combination of multiplying
and adding entries, but the details can be tricky. There are established conventions for which things to
multiply and add together, and they can be hard to remember. However, being able to do these computations
is a crucial skill in neural networks, given how pervasive they are. Adding to the difficulty is that there is a
kind of ambiguity to the process: matrix multiplications can often be thought of in different but compatible
ways, as we will see (also see note 20).

We start with the case where one of the matrices is a vector (recall that vectors are a kind of matrix,
where there is either a single row or a single column). When a matrix is multiplied by a column vector it is
called left multiplication (because the matrix is on the left). When a row vector is multiplied by a matrix it
is called right multiplication (because the matrix is on the right). In the first case of Av we go from matrix
and column vector to a new column vector. In the second case of vA we go from a row vector and a matrix
to a new row vector. The first case “processes” an input row into a transformed output row. The second
case processes an input column vector into a transformed column vector (this concept of “processing” will
be important below). These cases are good to start with because they show the basic mechanics of the
operations, which is to take a vector, and “scan” it over the matrix in a certain way, taking dot products as
you do, which are then “written out” to an output vector.

Left multiplication, where a matrix is multiplied by a column vector to produce a new column vector,
is more common in mathematics. We can think of the matrix as “operating” on the vector. Figure 6.10
shows how to perform the operation. Take the column vector and dot it with the first row to produce a the
first entry in the output column vector. Then scan down the rows the write out the result. In a sense we
have transformed the vector. The matrix represents the transformation, vector on the right is the input, and
the vector on the left is the output (the analogy to neural networks, which we come to in the next section,
should be clear).21

21The idea that a matrix represents a way of transforming vectors is common in mathematics. In fact, matrices are often
used to represent linear transformations, where one vector is converted in to another using a linear function. Think of a set of
points in the plane (vectors in a 2 dimensional space) getting moved in some specific way. The way these points move can be

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 74

Figure 6.10: The column vector can be thought of as being mental rotated and scanned across the rows of
the matrix to it’s left, taking dot products along the way which are written out to the output vector, which
is also a column vector. Alternatively, think of removing the rows from the matrix one by one, and dotting
with the column vector, writing out the output vector as we do.

Here’s the example from Figure 6.10 worked out:1 2
3 4
0 1

(1
2

)
=

(1)(1) + (2)(2)
(1)(3) + (2)(4)
(1)(0) + (2)(1)

 =

 5
11
2

The same example can also be represented by a right multiplication, where we transpose the matrix (see

appendix for a definition of transpose). To multiply a row vector on the left by a matrix on the right: take
the dot product of the row vector and the first column vector in the matrix (see figure 6.11. The resulting
number is the first component of a row vector. Then do this for each of the remaining columns of the matrix,
adding these dot products to the row vector as you go. The resulting row vector is the matrix product of
a row vector and a matrix. Intuitively, it is like you are writing out the matrix product, one number at a
time, by dotting the vector on the right with each of the columns of the weight matrix.

Figure 6.11: The row vector can be thought of as being rotated and scanned along the matrix to its right,
writing out the output vector, which is also a row vector. Alternatively the columns of the matrix can be
thought of as being removed one by one and dotted with the row vector, writing out the output vector.

Here’s the example from figure 6.11 worked out:(
1 2

)(
1 3 0
2 4 1

)
=

(
(1)(1) + (2)(2), (1)(3) + (2)(4), (1)(0) + (2)(1)

)
=
(
5 11 2

)
So in this case row vectors are transformed into row vectors. This approach is less common, perhaps

because it takes more space to write out. However, we will see a variant on this approach is quite common
when we deal with larger matrix products.

represented, in some cases, by multiplying each point by a matrix. For example, when you use a drawing program to modify a
simple line graphic (a bunch of points in a plane) the transformation of the selected set of points is implemented using matrix
multiplication. Rotations about the origin, reflections about a line through the origin, and dilations and contractions about the
origin are linear transformations.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 75

Note that the very same operation can be represented in two equivalent ways, by using the transpose.
This is based on the theorem that Av = vTAT , and is the basis of the ambiguity mentioned above.

6.10 Matrix Multiplication (Applications)

In this section we apply the ideas above, focus on the case of a row vector times a matrix.22 In this way we
produce a new output vector. Each of these dot products is a weighted input (see chapter 5). Assuming a
default unbounded linear activation function, this can be used to represent weight propagation. We consider
the feed-forward case first, then the recurrent case.

Consider the feed-forward network in figure 6.8, which uses linear activation functions without bias (we
are also ignoring clipping) so that node activations just are weighted inputs. That is, we multiply the input
vector by the intervening weight matrix to obtain the hidden unit vector: ahidden = ainputWinput,hidden.
We can then multiply the hidden unit vector by the hidden-to-output layer weight matrix to get the output
vector. We can continue to do this for all the layers of a feed-forward network. So, for linear networks, pretty
much all we do when updating the network is use matrix products (and even for non-linear networks, we
use the matrix product to compute vectors of weighted inputs, which are then transformed by, for example,
sigmoid functions).

Suppose the feed-forward network in figure 6.8 has linear activation functions and 0 bias, and its input
activation vector is ainput = (1, 2). To compute the hidden layer activation vector, we compute the dot
product between the input vector and each of the three column vectors:(

1 2
)(

1 0.7 2
−2 −1 2.1

)
=

(
(1)(1) + (2)(−2), (1)(0.7) + (2)(−1), (1)(2) + (2)(2.1)

)
=
(
−3 − 1.3 6.2

)
This can be visualized by imagining that an input activation vector is being combined (“dotted”) with

the fan-in weight vectors of each of the three nodes at the next layer, to produce the weighted input to each
of them and thus the next layer’s activation vector.

Now for the recurrent case. We can do the same kind of thing with the sparse recurrent network in
figure 6.9, but in this case we will be determining its activations at successive time steps. This is because
with a recurrent network, the output can always be fed right back into the network as input, which gives
these networks their dynamic properties. Let the weight matrix be Wr then a sequence of activation vectors
a(1),a(2),a(3), . . . (with time in parentheses) is given by a(2) = a(1)Wr, a(3) = a(2)Wr, etc.

This is easy to see by examples. Suppose we have activated node 2 of the network in figure 6.9 and we
start iterating. Since the activations and weights are all whole numbers, it’s not too hard to compute this
out for a few time steps. Again just dot the input vector by the columns to write out the first output, where
we get the activation vector at time 2 by multiplying the initial activation vector by the weight matrix (that
is, a(1)Wr = a(2)):

(
0 1 0 0

)
0 0 0 1
−1 0 0 0
1 0 0 0
0 0 0 −1

 =
(
−1 0 0 0

)

Try to do it in your head, dotting the (−1, 0, 0, 0) with the four columns of the matrix and thereby writing
out the output vector. In the next iteration you will get (0, 0, 0,−1), then (0, 0, 0, 1). If we keep going we
get the following sequence of states from the initial state (0, 1, 0, 0):

(0, 1, 0, 0), (−1, 0, 0, 0), (0, 0, 0,−1), (0, 0, 0, 1), (0, 0, 0,−1) . . .

You can easily set this up in Simbrain and confirm this is what happens. We will see in the dynamical
systems chapter 10 that this is one orbit in the network’s activation space. In this case, the network has
started to oscillate between two states, and it will do that forever, and that behavior is basically encoded in
the weight matrix.

22This matches the source-target format for representing fan-in weight vectors (note 20) which we have chosen for convenience
in much of this book.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 76

6.11 Matrix Multiplication (Part 2)

We now consider arbitrary matrix multiplications, rather than cases where one of the matrices is a vector.
However, we make use of mental models we developed in the matrix/vector case.

Consider a matrix multiplication

AB = C

A first useful skill to have down before getting to computations is the skill of checking to see that a
matrix multiplication is possible, and also anticipating what the shape of the output will be. This is nice
and easy to do. If A has shape (m,n) and matrix B has shape (n, p), then the product C is defined and has
shape (m, p). For example:

Shape: (5 × 2) × (2 × 7) ⇒ (5 × 7)

The “inner” dimensions (2 and 2) match, so the multiplication is valid. The resulting matrix is 5×7. Notice
that as long as the inner dimensions match, we can have any “outer” dimensions we like.

A multiplication AB = C can be interpreted in several complementary ways. Perhaps the most common
way is “entrywise”: the (i, j) entry of the result C is computed by taking the dot product of the ith row of
A and the jth column of B. See figure 6.12 for an illustration.

Figure 6.12: Row i, column j of C is the dot product of row i of A and column j of B. Here entry (2, 1) of
C is the dot product of row 2 of A and column 1 of B.

However, often when dealing with neural network applications, it helps to zoom-out and imagine that
rows or columns are being “processed” by the matrix. This builds on the idea left multiplications transforms
columns to new columns and that right multiplication transforms rows to new rows. In the more general
case, it turns out the row to row perspective is helpful and perhaps more common in some discussions.

We will start with the “row processing” respective. Here we view A in AB = C as a stack of row vectors
which we peel off one by one and right multiply by B to build up C.23 This idea of taking a stack of rows
and pushing them through a matrix to get another stack of rows is common with batch processing and in
understanding how representations “move” through a transformer.24

Figure 6.13 shows the idea abstractly. We peel off the rows of A and multiply them by the matrix B as
described in the discussion above. Notice that the result is another collection of rows in C, with as many
rows as were in A, where we just think of each rows as being the matrix transformation of that row by B.
This will be crucial in the discussions of transformers in chapter 17.

We basically repeat multiple row vector times matrix multiplications to build out the output. We think
of rows of A as being operated on by B:

— a1 —
— a2 —

...
— am —

 ·B =

— a1B—
— a2B—

...
— amB—

We can also take a column perspective on generic matrix multiplications, treating B in AB = C as a

sequence of column vectors, which we peel off one by one and left multiply by A to build up the columns of
C.25

23Alternatively, we can think of this as taking linear combinations of the rows of B, which is another useful perspective.
24See https://e2eml.school/transformers.html.
25See https://www.coursera.org/learn/matrix-algebra-determinants-and-eigenvectors/supplement/mGkyi/

matrix-operations.

 https://e2eml.school/transformers.html
https://www.coursera.org/learn/matrix-algebra-determinants-and-eigenvectors/supplement/mGkyi/matrix-operations
https://www.coursera.org/learn/matrix-algebra-determinants-and-eigenvectors/supplement/mGkyi/matrix-operations

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 77

Figure 6.13: How to view a matrix multiplication AB = C as “row processing”. The rows of the left matrix
A are taken one by one, and multiplied by matrix B on the right, using the methods of the section above
on right multiplication. This is done for each row (as is shown in the center panel), and the end result is an
output matrix C that can be thought of as a stack of rows, each of which has been processed by B.

Figure 6.14 shows the idea abstractly. We basically repeat multiple matrix by column vector multiplica-
tions to build out the output.

Figure 6.14: How to view a matrix multiplication AB = C as “column processing”. The rows of the right
matrix B are taken one by one, and multiplied by matrix A on the left, using the methods of the section
above on left multiplication. This is done for each column (as is shown in the center panel), and the end
result is an output matrix C that can be thought of as a file of columns, each of which has been processed
by A.

We think of A as operating on columns of B to write out columns as C:

A ·

 | |
b1 · · · bn

| |

 =

 | |
Ab1 · · · Abn

| |

6.12 Flow Diagrams

We saw in the last section that a matrix multiplication where we think of the left matrix as a stack of rows
can be thought of as transforming each row by the matrix on the right. The output matrix has the same
number of rows as the input matrix, and matrix is like a transformation operating down the rows (again, we
can also do this from a column perspective, but rows are more common in the relevant contexts and so we
simply decide to focus on them).

This sets up a kind of diagram that we will sometimes use in later chapters, one where we only show the
matrices and other transformations, and simply assume that stacks of rows (or other more complicated struc-
tures, like tensors, discussed next) are being processed by weight matrices, activation functions, and other
mathematical operations. What we have called “node layers” are not shown. One might call these matrix
flow diagrams, tensor flow diagrams, activation processing diagrams, etc. There is no settled terminology to
our knowledge, but this way of viewing things has become standard in the literature.

Figure 6.15 shows the idea. In the left panel, a matrix is shown as a stack of rows being processed by
two weight matrices M1 and M2. This could represent a 2 weight layer feed-forward network. Notice that
it’s the same kind of network we talk about elsewhere in the book, but that we now think of it as processing

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 78

stacks of vectors, not individual vectors. Also note the shape changes between the two matrices, in the
hidden layer (a stack of hidden layer activations), but that the number of rows has stayed the same. Also
notice that the bottom to rows remain zeros throughout, and so when they are multiplied by the matrices
they stay zero.

Also shown is an arrow from the input to the output, representing skip connection or residual connection.
This implies that the input matrix is added to the output matrix. Addition of matrices (and other tensors,
as discussed below) is defined when their shape stays the same.

Figure 6.15: (Left panel) Two matrices are used to process a matrix input conceptualized as a stack of rows.
This is essentially a two weight layer feedforward linear network, though we can assume activation functions
are being applied (such as ReLU, in which case such a network might be called an “MLP”, for multilayer
perceptron. Even though it is a standard network, we can see here that it can process matrices because of the
features of matrix multiplication discussed above. In this example there is also a skip or residual connection
from the input to the output, which assumes that the input and output retain the same shape, even if the
hidden layer activations are of a different shape. (Right panel). The entire diagram can be simplified to a
simpler diagram in which only the flow of activation is shown, as well as any mathematical operations. Here
the entire MLP is being reduced to a single box labeled T.

Overall we think of the matrices shown in bold (M1 and M2) as doing the processing (mainly weight ma-
trices and related structures in this book), and of the other matrices as being processed (mainly representing
stacks of activation vectors in this book). This facilitates another kind of diagram, where we don’t show the
stacks of activation vectors, but only the processing elements, sometimes collapsing several processing layers
into one box. On the right of figure 6.15 such a diagram is shown. In this diagram the skip connection is
shown as a straight line up–what is sometimes called a “residual stream”, with the detour into a few layers
of feed-forward processing shown by a box labeled T. It’s as if the processor reads from the main line then
writes back to it. In this way we can have many different operations of reading to and writing from a residual
stream. This will be important in the discussion of transformers and their mechanistic interpretation.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 79

6.13 Tensors

A tensor is a generalization of the concept of a vector that encompasses numbers, arrays of numbers, matrices
(2d arrays of numbers), arrays of matrices, arrays of these arrays, etc. These more complex structures are
increasingly common since the time of the deep learning revolution (section 3.7). The basic idea is not just
to work with vectors and matrices, but also sets of matrices and even sets of sets of matrices. These have
special nomenclature like “volume”. In this section we cover the basics.

The rank of a tensor is the number of indices required to specify an entry in it.These are also sometimes
called “n-dimensional arrays” or “n-d arrays” (1d array, 2d array, etc.).26 The shape of a tensor is the
number of components it has along each of the array’s dimensions. We have seen this with matrices, where
the shape is stated in terms of rows and columns, e.g. a 5 × 2 matrix. For more complex tensors the shape
is specified by a number of components for each dimension of the array, like a 4 × 2 × 5 volume. Here are
the main types of tensor:

• A scalar is a rank 0 tensor or 0d array because it requires no indices. The number 42 is a rank 0
tensor, a 0d array, but nobody talks about it that way.

• A vector is a rank 1 tensor or 1d array because it takes one index to specify an entry in a vector, and
the result is spread out in one dimension. The vector (0, 1, 0) is a rank 1 tensor, because it takes one
index to specify entries, but people usually just call it a vector. Vectors were discussed in much of this
chapter, starting in section 6.1.

• A matrix is a rank 2 tensor or 2d array, because it takes two numbers to specify an entry (a row and
column index), and the result is spread out in two dimensions. We’ve seen lots of examples of matrices
in this chapter, and they were discussed in section 6.7.

• A volume is an array of matrices. It is a rank 3 tensor or 3d array, because it takes 3 indices to specify
an entry, and the result is spread out in three dimensions. The term “volume” is common but not
completely standard, but is intuitive so we adopt it here. It can be visualized as a stack of matrices, or
as a solid, something like a Rubik’s cube or 3d chess board (see figure 6.17). A common use of volumes
is to represent images, which requires several channels of 2d information, several “copies” of a pixel
array. For example, an RGB color image that is 28 rows (height) by 28 columns (width) is represented
by three matrices (red, green, and blue) of shape 28 × 28. Thus the whole image is represented by a
tensor with shape 3 × 28 × 28. These indices are referred to as depth or channel, width, and height.

• A batch of volumes is an array of volumes. It is a rank 4 tensor or 4d array because it takes 4
indices to specify an entry. It is spread out in four dimensions, but since we can’t visualize that we
can instead visualize a set of volumes, as in the right panel of figure 6.16. The word “batch” is used
here because we are often dealing with sets or batches of inputs in a training dataset (see chapter 7),
in this case batches of RGB images, each of which is a volume with 3 channels. For example, if the
images are 3 × 28 × 28, then the batch of 100 images has shape 100 × 3 × 28 × 28.

Examples of each of these types of tensor are shown in figure 6.16. More examples are in chapter 14.
We can refer to the different indices for a tensor using standardized names in a standard order: batch

size, depth (number of channels), height, and width.27

6.14 Appendix: Vector Operations

Vectors are not just lists of numbers. They are members of vector spaces, which are abstract mathematical
spaces that have an addition operation and a scalar multiplication operation, and other operations that can

26Note that the dimensionalty of an array is the literal dimension of the object, like a vector is 1d and a matrix is 2d. This
is not the same as the dimensionality of the space these objects live in. For example, (1, 2, 1, 0) is a point in a 4d space, but it
is a 1d tensor or 1d array of numbers.

27This is sometimes called NCHW format (number of samples, channels, height, width). However, usage varies. Some put
height and width first in indexing; some put them last in indexing. Number of channels is also “depth” and number of samples
is also “batch size”. Even though the rank of a tensor is the number of indices required to specify an entry, sometimes additional
entries are included (e.g. specifying a vector as a column vector assumes it is being placed in a 2d space). Thus the presentation
of the “shape” of a tensor can vary. In figure 6.16 the shapes might be given as 1× 1, 6× 1, 6× 6, 3× 6× 6, and 3× 3× 6× 6.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 80

Figure 6.16: Schematic of different types of tensor. From left to right: a scalar, a vector, a matrix, a volume,
and a batch of volumes. It can be seen that they are 0d, 1d, 2d, 3d and 4d arrays. Numbers are not drawn
in; only the abstract shape of the tensors are shown.

Figure 6.17: Two ways a representing a 3d array: a stack of matrices (left) vs. a solid “Rubik’s cube” or
volume (right). Depending on the context one or the other representation is more useful.

be defined on the basis of these. In this appendix we introduce these two basic operations and several others.
We also develop the formal definition of a vector space.

The addition of two vectors with n components, or vector addition, is simply the component-wise
addition of the two vectors. This is easiest to see by example. Here is an example of adding two vectors
with 3 components:

(0, −1, 9) + (1, 2, 4) = (0 + 1, −1 + 2, 9 + 4) = (1, 1, 13)

Here are a few more examples:

(1, 1) + (2, 3) = (3, 4)

(1,−1, 1) + (0, 0, 0) = (1,−1, 1)

(2, 3, 5, 8, 13, 21) + (3, 5, 8, 13, 21, 34) = (5, 8, 13, 21, 34, 55)

(−1, .5,
√

7) + (−1,−2, .8) = (−2,−1.5,
√

7 + .8)

In a similar way, vector subtraction is the component-wise subtraction of the corresponding components
of two vectors.28 Here are some examples:

(1, 1, 1) − (0, 1, 0) = (1 − 0, 1 − 1, 1 − 0) = (1, 0, 1)

(10, 5) − (5, 10) = (10 − 5, 5 − 10) = (5,−5)

(1, 2, 3, 4, 5, 6, 7) − (0, 0, 0, 0, 0, 0, 0) = (1, 2, 3, 4, 5, 6, 7)

(2, 6, 1) − (.5, 20,−100) = (1.5,−14, 101)

If all of the components of a vector are 0 we call it the zero vector. Adding the zero vector to any
vector leaves it unchanged.

28Vector subtraction can be defined in terms of vector addition and scalar multiplication. Thus vector subtraction is not
fundamental to the definition of a vector space. It is nonetheless presented here because it is used in several other places in this
book.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 81

Another operation that can be performed with vectors is “scalar multiplication”. A scalar is a generic
term for the type of numbers we choose to work with. These numbers are called scalars because we can
“rescale” vectors using scalar multiplication. Usually we work with real numbers in which case we say our
scalars are real numbers. Sometimes people use complex numbers or something even more exotic for their
scalars.

The scalar multiplication of a scalar and a vector is obtained by multiplying each of the vectors
component’s by the scalar. Scalar multiplication is indicated by placing the scalar and vector next to each
other without any intervening symbols. For example scalar multiplication of the scalar 3 with the vector
(1, 2, 4) can be written as

3(1, 2, 4) = (3 · 1, 3 · 2, 3 · 4) = (3, 6, 12)

The operations of vector addition and scalar multiplication can be combined. The result is called a linear
combination of vectors. For example

1(0, 0) + 2(0, 1) + 3(1, 0) + 4(1, 1) = (7, 6)

is a linear combination of the vectors (0, 0), (0, 1), (1, 0), and (1, 1).
Scalar multiplication of any vector with the number 0 is the zero vector. The scalar multiple of a vector

with the scalar −1 gives us the negative of the vector. We define vector subtraction of one vector from
another as the addition of the vector’s negative. Subtracting a vector from itself is the zero vector.

(1, 2, 4) − (1, 2, 4) = (1, 2, 4) + (−1, −2, −4) = (0, 0, 0)

Now we can more formally define a vector space. A set of vectors that satisfies two conditions

(1) The sum of any two vectors in the set is also in the set.
(2) Every scalar multiple of a vector in the set is also in the set.

is called a vector space. We will apply vector spaces to neural networks in chapter 10. If a subset of a
vector space satisfies these conditions, we say it is a subspace of the vector space. These definitions allow
a vector space to be a subspace of itself.

The set of all linear combinations of a set of vectors is called the span of the vectors. The span of a
set of vectors forms a subspace. If the span of a set of vectors is the whole vector space and any proper
subset of that set of vectors does not span the whole vector space, then that set of vectors is a basis of the
vector space. There are many different bases29 for a vector space but all of them have the same number of
members. This number is the dimension of the vector space.

For example

{(1, 0), (0, 1)} {(1, 2), (1, 1)}

are both basis for the same 2 dimensional vector space. Every vector (x, y) can be written as

(x, y) = x(1, 0) + y(0, 1)

so {(1, 0), (0, 1)} spans the plane. But every vector in the span of (1, 0) has 0 for it second component and
every vector in the span of (0, 1) has 0 for its first component, so we cannot write every vector in the plane
without both (1, 0) and (0, 1). The set {(1, 0), (0, 1)} is a basis for the plane. It is called the standard basis.

Every vector (x, y) can be written as

(x, y) = (y − x)(1, 2) + (2x− y)(1, 1)

so the set {(1, 2), (1, 1)} spans the plane. But the components of every vector in the span of (1, 1) are equal
to each other, so (1, 2) is not in the span of (1, 1). For every vector in the span of (1, 2) the second component
is twice the first, so (1,1) is not in the span of (1, 2). Thus, {(1, 2), (1, 1)} is also a basis for the plane.

The transpose of a matrix A, denoted AT , is the matrix obtained by flipping A over its diagonal. That
is, the element in the ith row and jth column of A becomes the element in the jth row and ith column of
AT . Formally,

(AT)ij = Aji.

29“Bases” is plural for “basis”.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 82

For example:

A =

(
1 2 3
4 5 6

)
⇒ AT =

1 4
2 5
3 6

Note that transpose rotates row vectors to make them column vectors and column vectors to make them

row vectors.

6.15 Appendix: Elementwise (Hadamard) Product

The elementwise (or Hadamard) product of two vectors or tensors a and b with the same shape is denoted
by a⊙b and is defined as a vector or tensor of the shape whose entries are the products of the corresponding
components of a and b. That is, we multiply corresponding components of the two vectors to produce a
new vector with the same shape as the original. In a way this is the most intuitive concept of multiplying
vectors or tensors. Just line them up and multiply.

For example

(1, 2) ⊙ (3, 4) = (1 · 3, 2 · 4) = (3, 8) (6.9)

The operation also works on matrices and higher-rank tensors. For example

(
1 2
3 4

)
⊙
(

5 6
7 8

)
=

(
1 · 5 2 · 6
3 · 7 4 · 8

)
=

(
5 12
21 32

)
. (6.10)

6.16 Appendix: Block Matrix Representations

For the feed-forward network in figure 6.8, we can begin with a matrix for the full network, which illustrates
some of its structure:

0 0
0 0

1 0.7 2
−2 −1 2.1

0 0
0 0

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

−2 0.9
1 −1

−1 −1.2
0 0
0 0

0 0 0
0 0 0

0 0
0 0

This is a “block matrix” containing two blocks of non-zero values (corresponding to the layers that are
connected), and 7 blocks of zeros (corresponding to possible layer-to-layer weight matrices that don’t exist
for this network, e.g. a recurrent layer from the hidden layer to itself, or a direct layer from the input to the
output layer).

6.17 Exercises

1. What is the dimensionality of the input space, hidden unit space, output space, weight space, and
activation space in Fig. 6.8 (Left)? Answer: 2-dimensional, 3-dimensional, 2-dimensional, 12-dimensional,
and 7-dimensional.

2. What is the dimensionality of the weight space and activation space in Fig. 6.8 (Right)? Answer:
4-dimensional and 2-dimensional.

3. What is the dimensionality of the weight space and activation space in Fig. 6.18? Answer: 3-dimensional
and 3-dimensional.

4. What is (1, 1, 1) • (1, 1, 1)? Answer: (1 · 1) + (1 · 1) + (1 · 1) = 1 + 1 + 1 = 3.

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 83

5. What is (−1, 0, 1) • (−1,−1, 0)? Answer: (−1 · −1) + (0 · −1) + (1 · 0) = 1 + 0 + 0 = 1.

6. What is (10, 2,−10) • (0, 10,−10)? Answer: 0 + 20 + 100 = 120.

7. What is (.5,−1, 1,−1) • (10,−2, 1, 2)? Answer: 5 + 2 + 1 − 2 = 6.

8. Suppose we have (a1, a2) = (1,−1), (w1,3, w2,3) = (−1, 1) and b3 = 5. What is n3? Answer: (1 · −1) +
(−1 · 1) + 5 = −1 − 1 + 5 = 3.

Figure 6.18: A recurrent network with three nodes labelled 1, 2, 3 and weights w1,2 = −1, w2,3 = 0.5, w3,1 = 2.

9. What is the matrix representation of the weights in the network in Fig. 6.18? Answer:0 −1 0
0 0 0.5
2 0 0

10. What is the fan-in weight vector for node 2 in Fig. 6.18? Answer: (−1).

11. What is
(
1 1

)(1 2
3 4

)
? Answer:

(
(1)(1) + (1)(3), (1)(2) + (1)(4)

)
= (4, 6).

12. What is
(
−1 1

)(1 −2
3 4

)
? Answer:

(
(−1)(1) + (1)(3), (−1)(−2) + (1)(4)

)
= (2, 6).

13. What is
(
−10 10

)(0.5 −0.5
−1 1

)
? Answer: (−15, 15).

14. If the network in Fig. 6.18 has linear nodes and is given the activation vector (a1, a2, a3) = (1, 1, 1),
what will its activation be in the next time step? Answer:(
1 1 1

)0 −1 0
0 0 0.5
2 0 0

 =

(
(1)(0)+(1)(0)+(1)(2), (1)(−1)+(1)(0)+(1)(0), (1)(0)+(1)(.5)+(1)(0)

)
= (2,−1, 0.5)

15. If the network in Fig. 6.18 has linear nodes and is given the activation vector (a1, a2, a3) = (−1,−1, 2),
what will its activation be in the next time step? Answer:(

−1 −1 2
)0 −1 0

0 0 0.5
2 0 0

 = (4, 1,−0.5)

CHAPTER 6. LINEAR ALGEBRA AND NEURAL NETWORKS 84

16. If the network in question 14 is iterated four times, what will its activation be in those four time steps?
We saw from question 14 that after one time step the activation vector is (2,−1, 0.5). If we now use this as
input to the network again we get:

(
2 −1 0.5

)0 −1 0
0 0 0.5
2 0 0

 = (1,−2,−0.5)

Repeating this process again with (1,−2,−0.5) as input we get (−1,−1,−1). Repeating one more time we
get (−2, 1,−0.5). Answer: (2,−1, 0.5), (−1,−2,−0.5), (−1,−1,−1), (−2, 1,−0.5).

Chapter 7

Data Science and Learning Basics
Jeff Yoshimi

In this chapter, we cover fundamental concepts used when training neural networks, focusing in particular on
the tables of data involved. Tables of data are the bread and butter of any neural network practitioner, and
we must understand them well. Thus, in this chapter we begin with a brief introduction to data science,
which is an area of practice focused on processing and analyzing datasets, often using machine learning
models. Though data science is most connected with engineering uses of neural networks (see chapter 2),
concepts from this field are equally applicable any time neural network models are used. Moreover, anyone
who uses neural networks in practice must understand how to deal with data: how to clean it up, re-code
certain features, produce exploratory visualizations, and so forth. In this chapter, we begin with an overview
of basic concepts from data science. At the end of the chapter, we use these concepts to differentiate the
main types of learning algorithm in neural networks.

7.1 Data Science Workflow

Here is a basic workflow that is common in data science:

1. Getting the data. Describing it. Understanding its basic features. Coming up with useful column
names or “feature” names. You might obtain data from an experiment, download data from a website,
or be given a large table or spreadsheet. To get a better sense of the nature of the data used in a neural
network, and the kinds of work needed to wrangle it into a format that a network can process, several
public repositories of machine learning and other kinds of data exist.1 Special issues arise when using
the very large datasets (“big data”) required to effectively train some machine learning models2, but
we will focus on small datasets that are useful for illustrative purposes.

2. Visualizing the data / Exploratory Data Analysis (EDA). Developing an initial feel for data, often
using visualizations.3 Creating pictures that illustrate the main features of your data, which suggest
how your machine learning task might be solved, e.g. finding data that show a correlation between
some input data and the target data.

3. Preparing the data. Also called data wrangling. Creating useful features. Filling in missing data.
Removing outliers. Discussed in more detail in section 7.3.

1See: https://archive.ics.uci.edu/ml/index.php and https://en.wikipedia.org/wiki/List_of_datasets_for_

machine_learning_research. Many other sources of data exist, of course, including US Census data, World Health organi-
zation data, etc. The website Kaggle has a large repository of datasets and machine learning tasks that can be pursued in a
game-like competitive framework. Many public tools, like R, sklearn, Pytorch, and Tensorflow have datasets included.

2Cf. https://en.wikipedia.org/wiki/Big_data and ETL https://en.wikipedia.org/wiki/Extract,_transform,_load.
3See https://en.wikipedia.org/wiki/Exploratory_data_analysis.

85

https://archive.ics.uci.edu/ml/index.php
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Exploratory_data_analysis

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 86

4. Create and train a model. Choose a type of model and then train it. This is where neural networks
come in. In machine learning there are many kinds models, like multiple regression and decision trees
and ensembles of models. But we focus on neural networks.

5. Assessing the model’s performance on test data. We will see that it is often important to first train a
model on one set of data, and then to see how well it generalizes to new data it’s never seen before.

We will not discuss obtaining data or exploratory data analysis here. We discuss data wrangling in
section 7.3. The rest of the chapter, and much of the rest of the book, is focused on creating and training
neural network models. Assessing performance is briefly discussed in several places in this chapter and the
next few chapters.

Of these steps, the main one in terms of learning is the step where we build and train a model. When
the model is trained, we update its parameters. Parameters are discussed further in the dynamical systems
chapter, chapter 10. In a neural network, these parameters are usually weights and biases (chapter 5). For
a feed-forward network, parameter changes impact the input-output function the network produces. Feed-
forward networks take an input vector and produce an output vector. The process of training a feed-forward
network is the process of modifying the parameters in such a way as to change the vector-valued function
it implements, reducing overall error (the difference between actual outputs and targets). In chapter 12, we
see how to update the parameters of a feed-forward network to achieve a desired input-output function, e.g.
to make a network that recognizes letters or faces in images.4

However, in this chapter we also see all the other work that is involved in actually building a neural
network model. Data must be gathered, analyzed, and cleaned up. And then we must partition our data in
a special way in order to test how well it works not just on the data we trained it on, but also on new data
it has never seen before.5

7.2 Datasets

As discussed in chapter 1, neural networks are usually linked to an environment, where that environment
is often a simple table or spreadsheet. Even though we are just dealing with tables here, there are a lot of
concepts and terms to master. We will take a dataset to be a table of values to be used by a neural network.
A row of a dataset is an example, instance, or case. A column of a dataset is a feature or attribute. The
columns of a dataset often correspond to the nodes of a network. Rows often correspond to inputs that will
be sent to the input layer of a network, or used to describe desired outputs. These rows and columns can
be transformed, partitioned, and manipulated in various ways, as we will see.

As an example, consider the Motor Trend Cars dataset (“mtcars”), shown in Fig. 7.1, which is included
with the R statistical computing environment. The data is based on a 1974 issue of the car magazine
Motor Trend, which road-tested about 30 models of cars in the 1973-74 model year and measured a range
of performance features.6 The dataset contains 30 examples with 10 features each, 6 of which are shown
(the row indices and the model names will not be sent to any neural network, so we don’t count them as
features). Notice that this table, as it stands, is not ready to be used by a neural network. The neural
network can’t deal with the names (which are strings, rather than numbers), and as we’ll see, some of the
values (like horsepower) are kind of big for a node that is only meant to deal with small numbers between
-1 and 1. However, after a bit of processing, the data can be used to train a neural network to, for example,
predict the fuel efficiency of a car based on its weight and number of cylinders.7

We can distinguish two main types of data, beginning with categorical data, also known as “nominal
data”. Categorical data can take one of a discrete list of values. For example, cards can have one of four

4For a recurrent network, parameter changes influence the dynamics of the system, they change its “phase portrait.” From
the same initial state different activation patterns will occur. In chapter 16, we see how the parameters of a recurrent network
can be trained to achieve desired dynamics. This type of network can be used to produce realistic speech and convincing text,
as we will see.

5A worked example illustrating many of the ideas in this chapter in tensor flow is here: https://www.youtube.com/watch?

v=-vHQub0NXI4.
6See https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html. A neural network that processes

this dataset is included with Simbrain as a script called backprop cars.bsh.
7A detailed discussion of this case is here: https://www.youtube.com/watch?v=K4GZ51cozRs.

https://www.youtube.com/watch?v=-vHQub0NXI4
https://www.youtube.com/watch?v=-vHQub0NXI4
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html
https://www.youtube.com/watch?v=K4GZ51cozRs

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 87

Figure 7.1: A fragment of the mtcars dataset showing some of its examples (rows) and some of its features
(columns)

suits: hearts, diamonds, spades, or aces. The state one lives in can be one of 50 values. In the example in
Figure 7.1, cylinders appears to be categorical, because there are three possible values for that feature: 4, 6,
or 8 cylinders. For a neural network, these will be converted to numerical data using a one-hot encoding
(where one node corresponding to the category is “hot” and the rest are not), as we will see.

Second, numerical data is data that is already in the form of numbers. These numbers can either be
real-valued (represented by floating point values in a computer) or integer-valued. Examples: age, income,
house prices, hours of study, GPA, length, width, weight, caloric intake. In Figure 7.1, most of the columns
are numerical. A few seem to be integers (displacement, horsepower), and others are clearly real-valued
(weight, quarter-mile).8

To get a general sense of how datasets are used with neural networks, see Fig 7.2. Each column, each
feature, is generally associated with the nodes of a network. The figure shows an input dataset, but we will
see there are other types of datasets used with neural networks as well.

7.3 Data Wrangling (or Preprocessing)

Raw data isn’t usually ready to be fed to a neural network. Sometimes a dataset contains strings of text,
images, sound files, and other structures that must be converted into a numerical format. Neural networks
want numbers, and they often want those numbers to be a certain way. So we have to pre-process the data
in various ways. Our ultimate goal is typically to have a table all of whose cells contain numbers that lie
within a fairly small range, like between -1 and 1 or between 0 and 1.9 That is, we want to end up with a
dataset where each row is an input vector that can be fed to the input nodes of a neural network.

So we have work to do. We have to convert non-numerical data to single numbers. We have to fill in
missing data. And even when all the data is numerical we must often do further things like rescaling the
data. These operations correspond to pre-processing the data. This is sometimes called data wrangling
or “data munging”.10 Here is how wikipedia defines it:

Data munging or data wrangling is loosely defined as the process of manually converting or
mapping data from one ‘raw’ form into another format that allows for more convenient consump-
tion of the data with the help of semi-automated tools.11

8In more rigorous treatments (derived from the study of scale types in measurement theory), ordinal, interval, and ratio
scales are distinguished. We collapse interval and rational scales into numerical. Ordinal data (e..g first, second, and third in
line) can often be treated as integers or using a one-hot encoding.

9At that point our dataset has the form of a matrix (cf. Chapter 6), and mathematical operations of linear algebra can be
applied to it.

10For a sense of some of the ways data can be wrangled, have a look at the scikit-learn pre-processing library: http:

//scikit-learn.org/stable/modules/preprocessing.html.
11https://en.wikipedia.org/wiki/Data_wrangling.

http://scikit-learn.org/stable/modules/preprocessing.html
http://scikit-learn.org/stable/modules/preprocessing.html
https://en.wikipedia.org/wiki/Data_wrangling

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 88

Figure 7.2: An example of an input dataset, which illustrates one standard way datasets are used with neural
networks. Each row of the dataset is thought of as one input vector for the neural network.

The process of wrangling data is usually understood as a step-wise workflow or pipeline, where the data is
obtained and transformed in stages until it is ready to be processed by a neural network. There are different
ways of understanding this workflow. Here is a generic version of a data wrangling workflow:

• Data cleaning: remove, fix, or otherwise deal with bad data. Fill in missing data.

• Feature-extraction and feature-engineering: Transform data (e.g. text, images, audio files, DNA se-
quences) into a numerical format and more generally produce a set of numerical features to be used
by the neural network.

• Rescaling: alter the numbers in the dataset to, for example, ensure that they are all in the range
(−1, 1)

The first step is data cleaning or “data cleansing”. There might be stray characters that make it hard
to import the data, or columns that are irrelevant to what you are trying to do. Often it helps to simply
focus on a subset of columns or rows (subsetting). A related cleansing step is dealing with missing data,
using methods of data imputation to determine a policy for filling in missing data. Common techniques
include filling in these cells with 0’s, or with the mean value of the column they are in.12

The next step, feature-extraction involves converting non-numeric data into a numerical form suitable
for a neural network. Images, movies, audio, DNA sequences, and of course, text, are all non-numeric data
that must be converted to a numerical format.13 This is often the most involved and most important step
in building a working model. Many of the earliest connectionist models (e.g. Nettalk) relied on clever ways
of representing written and spoken speech in a vectorized way that could be fed to a network.

We are construing this step quite broadly to include any steps involved in coming up with features
(numerical columns) for a dataset, from flattening a matrix, to combining features into new features. The

12See https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4 and http://www.stat.columbia.

edu/~gelman/arm/missing.pdf.
13Also see http://scikit-learn.org/stable/modules/feature_extraction.html

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
http://www.stat.columbia.edu/~gelman/arm/missing.pdf
http://www.stat.columbia.edu/~gelman/arm/missing.pdf
http://scikit-learn.org/stable/modules/feature_extraction.html

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 89

latter is sometimes also called feature-engineering, where a new feature is designed for use in training a
model, e.g. deciding not to feed a neural network height and width information separately, but rather to
feed it the ratio of the height to the width of an image, which might yield better results for some applications.
Another example in the mtcars dataset would be to take the model of a car and then consult a database
online to find new features of the cars.14

Here are some examples of feature extraction in this fairly broad sense.

• Taking a feature like the model of a car, state of residence, or gender, and converting it into a vector
of binary values. There are several ways to do this, but the most common is using a one-hot or “one-
of-k” encoding, which is a type of coding that converts categorical data to binary vectors.15 If we
have three categories–Fish, Swiss, and Gouda–then we can use a one-of-three encoding to represent
Fish as (1, 0, 0), Swiss as (0, 1, 0), and Gouda as (0, 0, 1). In a bank of nodes, this corresponds to one
node being active (“hot”) and the other nodes being inactive, hence “one-hot” encoding. One is hot,
and the others are not. For example, in the cars dataset, we can represent 4-cylinder, 6-cylinder, and
8-cylinder by a one-hot (in this case one-of-3) encoding, as in Fig. 7.3. Notice that the cylinder column
in Fig. 7.1 has been replaced by three columns. The column that has a “1” in it indicates whether the
car is 4, 6, or 8 cylinders. These are also called dummy or indicator variables in psychology. They are
also a form of localist as contrasted with distributed representation (see chapter 1).

• Taking a matrix and “flattening” it into a vector that can be treated as a row of a dataset. This is often
done with images. Sometimes an even more complex object, a tensor, must be flattened (see section
6.13). Color images are often represented as three separate pixel images, corresponding to red, green,
and blue channels. So we have three matrices that must be flattened and concatenated to produce one
long vector, which is then a proper row of a dataset that can be fed to a network.

• Converting strings of texts to vectors. Thus, the word “red” might become the vector (1, 0, 1, 0, 1, 1).
Techniques for converting linguistic data to vectors are sometimes referred to as methods of word
embedding. Word embedding is a major area of research in its own right (see chapter 8).

• Dividing a sound file into smaller time windows and converting those “clips” of audio into vectors,
often using signal processing techniques like Fourier analysis.

• Hand coding video or audio data in some way, e.g. counting how many times a participant in a
videotaped experiment hits a doll, or how many questions a participant asks. This kind of technique
is often used in experimental settings, e.g. in psychology.16

Figure 7.3: Convert cylinders to a binary “one-hot” encoding.

14In competitive machine learning, as in Kaggle, often the best solutions are based on clever feature engineering, more so
than anything in the machine learning model itself.

15See https://en.wikipedia.org/wiki/One-hot.
16See https://en.wikipedia.org/wiki/Coding_(social_sciences).

https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/Coding_(social_sciences)

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 90

Having coded all data as numerical, additional work often remains to be done, in particular, rescaling
the data so that they fit in some standard range, e.g. (0, 1) or (−1, 1). Figure 7.4 shows the mtcars dataset
of figure 7.3 after all columns have been rescaled to lie between 0 and 1. A simple way to do this for positive
valued data is to divide each entry by the maximum value in that column. A similar method works on data
that contains negative values. This is sometimes called min-max scaling.17 This method ensures that all data
are in the range (0, 1). Another method is standardizing, where each value in a column is centered at the
column mean and scaled by standard deviation. This makes it intuitive to interpret data. If we standardize
a column, then the 0’s correspond to average values, positive values are above average, and negative values
are below average (in statistics these values are sometimes called z-scores). Anything above 1 is unusually
large, and similarly for values below -1.

Figure 7.4: Data from Fig. 7.1 rescaled to (0, 1).

7.4 Datasets for Neural Networks

When we train a neural network, we update its parameters–its weights and biases–so that it can learn to do
useful things. This is what our brains do when we learn, updating synaptic strengths in order to function
more effectively. As we will see, for unsupervised learning, we take an input dataset and train it to pick up
statistical features of the data. For supervised learning, we take “target data” or “labeled data” and use it
to train a network to do some desired thing.18

To support these tasks, we must define several standard types of datasets:

• Input dataset: each row contains an input vector that can be sent to a neural network. This idea is
illustrated in Fig. 7.2.

• Output dataset: each row contains an output vector that has been recorded from a neural network.
These are also called “predictions”.

• Target dataset (labels): each row contains a target output vector we’d like a neural network to
produce for a given input vector. The target dataset is a set of desired outputs, a set of labels.

• Labeled dataset: an input dataset and a corresponding target dataset. Note that the two datasets
must have the same number of rows. This idea is illustrated in Fig. 7.8.

Examples of each type of dataset are shown in Fig. 7.5.
An input dataset contains input vectors to be sent to the input nodes of a neural network. Each row

of an input dataset is a point in the input space of a neural network. Input datasets are used for all kinds
of learning tasks, supervised and unsupervised.

17It can also be called “normalization” but that term is confusing because it is used in linear algebra in a different way.
18Note that the term “label” is associated specifically with classification tasks, where an input is sorted into one of a finite

set of categories. Think of labeling images as cat vs. dog. But not all training tasks are like that; regression tasks for example
associate inputs with real-valued targets. “Target data” is thus a more general term. However, the terminology of “labeled
data” has become standard, and is snappier than “input-target dataset”. We will use both terminologies interchangeably.

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 91

An output dataset is generated from an input dataset. We feed each row of the input dataset to a
network and record the resulting output vector. Thus, an output dataset will have as many rows as the input
dataset used to train it. The phrase “output dataset” is non-standard. Since these are often interpreted as
predictions given a set of inputs, this table is sometimes referred to as a set of “predictions”.

A target dataset contains the outputs we want the network to produce. These can be thought of as
desired outputs. These targets are also called “labels”, for classification tasks, described below. We compare
an output dataset with a target dataset to produce an error, discussed in chapter 12. Like an output dataset,
a target dataset will have as many rows as a corresponding input dataset.

A labeled dataset (also labeled data or input-target dataset) is a concatenation of two tables, an input
and a target dataset. We can represent this by simply concatenating the two datasets and separating them
with double vertical lines, as in the right-most panel of Fig. 7.5. This is perhaps the most common type of
dataset to consider, since it is a specification of a supervised learning task. Labeled data is often difficult to
obtain, because we can’t simply gather it “from the world.” If we take a bunch of pictures of people’s faces
and transform the data then we have our input dataset. But it is an extra step for a human to come in and
label each face as male or female, so that we can confirm that a machine can also do the job. The contrast
to labeled data is an input dataset by itself, or what is sometimes referred to as “unlabeled data”.

Figure 7.5: From left to right: an input dataset, output dataset, target dataset, and labeled dataset.

7.5 Generalization and Testing Data

One attractive feature of neural networks is that even if they have been trained on a specific dataset, they
will tend to generalize well to new patterns they weren’t trained on. This is easy to see with the 3-object
detector in Simbrain, discussed in section 1.2. Try plugging in inputs it has not seen before, and it will still
do well. This is a psychologically realistic property of neural networks. Suppose I have only ever seen two
pineapples. My neural network was trained on only two pineapples. But I manage to correctly classify many
other pineapples that I’ve never seen, even though they produce slightly different patterns on my eye. Our
neural networks are good at generalization, at extrapolating from what they have seen to new things they
have not seen.

On the other hand, sometimes the specific inputs a neural network is trained on are, in a sense, too
specific. Ideally, we have diverse inputs that allow us to deal well with new situations. But sometimes
people are exposed to data that is narrow and that leads to poor generalization. If you grow up in the forest
you will be very good at classifying trees but not so good at classifying buildings. This is the origin of biases
and stereotypes and linguistic accents.

This issue also comes up in neural networks. When you train a network on a labeled dataset, it can learn
to be very good at predicting the target data you provide it. However, it might end up being too finely
tuned on that data and thus fail to do well with new data. This is called overfitting. We want to build
models that are not overfit to the data they were trained on. We want them to do well not just on the data
we trained them on, but also on new data they have never seen. How well does the network generalize to
new data? This is also referred to as “out of sample” performance (how well does a model do outside of the
same data it was trained on). We train a network on 30 cars, and then test it on a new car it’s never seen
before. Or we train a network to classify 100 letters, but then we give it new letters it’s never seen before.
A good network can generalize from what it’s been trained on, to new data.

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 92

To deal with this issue, we partition a labeled dataset into two subsets. We train the network on one
subset of data and then test it on another set of data that we have “held out” to see how well the network
generalizes. These two subsets are a training subset and a testing subset of a labeled dataset.

A training subset or training dataset or training data is a subset of a labeled dataset used for training
your model.

A testing subset or testing dataset or testing data is a subset of a labeled dataset used for testing your
model on new inputs. This is data that is held out to see how well a model generalizes.

The idea is illustrated in Fig. 7.6. The idea is that we first train the network using training data, and
then validate it using testing data.19

Figure 7.6: The rows of a labeled dataset (with inputs and targets) divided into a training and a testing
subset. The training subset is used to train our model, and the testing subset is used to validate how well it
generalizes. Thus we end up with four tables: (1) training inputs, (2) training targets or labels, (3) testing
inputs, and (4) testing targets.

So what we actually often end up with, in supervised learning, is four tables. (1) Training inputs, (2)
test inputs, (3) training targets, and (4) test targets. The training inputs and targets are used to train the
model. The test inputs and targets are used to determine how well it performs on new data. In a model we
might label these train inputs, train targets, test inputs, and test targets.

In practice, even more complex ways of partitioning labeled data into training and testing subset are
used, for example splitting the data into training and testing sets different ways on different passes.20 The
particular training subset used in a given stage of training is often referred to as a “batch”. We are keeping
things simple here for illustrative purposes.

7.6 Supervised vs. Unsupervised Learning

We can distinguish two general ways of training a feed-forward neural network: supervised methods, where
we tell the network what it should do with each input, and unsupervised methods, where we don’t tell the
network what we want it to do, but it figures out on its own (without a “supervisor”) what to do. These
concepts apply to recurrent networks as well, but we’ll focus on feed-forward networks for now.

19In a machine learning context, we might also distinguish working from production data. Working data includes all the data
mentioned above, used to train and test and validate a machine learning model. Production data is then data the machine
learning model encounters in the “real world” when it has been deployed and is being used.

20The more general topic is cross validation, see https://en.wikipedia.org/wiki/Cross-validation_(statistics) and
http://scikit-learn.org/stable/modules/cross_validation.html.

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://scikit-learn.org/stable/modules/cross_validation.html

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 93

Figure 7.7: Illustration of how unsupervised learning relies only on an input dataset.

Unsupervised learning is learning without a teacher, which is covered in chapters 9 and 11. We don’t
tell the network what we want. It must adapt on its own, discovering statistical patterns in the inputs it is
exposed to. There is just an input dataset, as shown in figure 7.7. There is no target data. In the example
shown in the figure, we repeatedly expose the network to a set of inputs, and it will automatically develop
feature detectors, which respond to specific clusters in the input dataset.

This is more neurally and psychologically realistic. After all, humans and animals don’t constantly have
a parent or teacher around telling them what’s right or wrong. For this reason we saw that it was a general
principle of learning in the neuroscience chapter 4. It is well known in psychology that a great deal of learning
(e.g. “latent learning”) occurs without explicit supervision; rats get to know their way around a maze even
without explicit rewards [160]. It can also be useful in machine learning, since we oftentimes don’t have
training data available (hence the term “unlabeled data”).

Figure 7.8: Illustration of how supervised learning uses both input and target datasets.

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 94

In the case of supervised learning, we tell the network what we want it to do. There is a teacher
or trainer and so we have a labeled dataset. It’s kind of like a parent telling a child, “No, that’s wrong,
this should be the answer!” For feed-forward networks, this means we give it a labeled dataset and say
“implement that”! We train the network to perform a set of input-output associations. The general schema
is illustrated in figure 7.8. We train a network using a supervised learning algorithm using a labeled dataset,
which includes two tables, one for the inputs (the input dataset), and another for the outputs that we should
get for each input (the target dataset). As each row of an input dataset is fed to the network, a corresponding
row of a target dataset is used to determine how the network should respond. Over time, parameters are
gradually updated in such a way that overall error is reduced, so that the output dataset looks as close as
possible to the target dataset.

Supervised learning is a huge topic that will be covered in chapter 12. Almost all of the major examples
of things neural networks have done–drive cars, classify letters, translate languages or speech signals, etc.
(see chapter 1)–were achieved using supervised learning. However these methods are not just useful in
engineering. They have also been used to used in connectionism and computational cognitive neuroscience
to study the kinds of representations the brain develops based on its exposure to inputs. Recall, for example,
the discussion of the cerebellum and basal ganglia in chapter 4, both of which are thought to learn via
supervised learning.

7.7 Other types of model and learning algorithm

Learning algorithms and the models they are used to train can be classified in other ways as well. For
example, in chapter 13 we distinguish between supervised learning models that peform classification tasks
and regression tasks, which is based on whether the target dataset contains categorical one-hot data
(classification) or real-valued numerical data (regression).

Another distinction that is sometimes useful is that between a generative model and a discriminative
model. A generative model is a model that can be used to generate prototypical features of a category with
a given category label. They can be feed-forward networks that associate one-hot localist vectors with
distributed feature vectors. For example, if you are asked to “describe a typical Golden Retriever”, or “what
are the height and weight of an average third grader”, you can generate answers. These are contrasted
with discriminative models, where features are associated with categories. For example, if you are shown
a picture of a dog and asked “is this a Golden retriever?”, or a picture of a person and asked “is this a
third grader?”, you are simply discriminating a category based on inputs. A discriminative model is less
demanding than a generative model, since you only must categorize items, rather than generating examples
of items from a category (Compare multiple-choice questions with fill-in-blank questions on a test. Fill in the
blank is harder, because you must generate and answer rather than just recognizing one answer as correct).
Discriminative models, like classifiers (see chapter 13), are the focus of much of this book, and are well known
in machine learning. Face and text recognition are usually based on discriminative models. But generative
models are also important. For example, models that generate human speech or fake text are discussed in
chapter 16.21

There are other types of learning algorithms and approaches to learning in neural networks as well.
An evolutionary algorithm (or genetic algorithm) is a class of algorithm that simulate evolutionary

processes. You start by saying what counts as fitness and then set up an array of simulated genes and some
kind of simulation. Then you run it! Millions of years of evolution can be compressed into minutes of time,
as millions of simulations are run. When applied to neural networks, a batch of networks can be built, based
on incrementally varying and mutated genes. The best are selected and further permuted, and the process
continues. The script evolveNetwork.bsh in Simbrain evolves a network such that on average half of the
nodes are active every few iterations. Run it a few times. You will see that it evolves a variety of solutions
to the problem.

Another approach to training, reinforcement learning, is a variant of supervised learning where you
don’t just give the network a table of values to associate, but rather the action of an agent in a simulated

21I am using non-standard and informal definitions of generative and discriminative models. A generative model is formally
defined as a model of the joint probability distribution over inputs and outputs of a model, where the outputs are often
categorical, which means that given a category you can estimate the associated features. A discriminative model is defined as
a model of the probability of outputs given inputs.

CHAPTER 7. DATA SCIENCE AND LEARNING BASICS 95

environment, which tells the network when what it’s doing is good or bad. This is a kind of virtual imple-
mentation of behaviorist psychology (Skinner famously thought all behavior could be explained as the result
of a history of reinforcement and punishment). So you take a virtual agent, put it in a virtual environment,
and tell it what is good and bad in that environment. Getting the cheese is good. Getting attacked is bad.
Now you simulate thousands or millions of explorations of the environment and it will learn to approach
cheese and avoid predators. Some of the major recent developments in machine learning have been based
on reinforcement learning (e.g. the success of AlphaGo) [148]. Another famous example is a system that
learned to play a bunch of old Atari video games [109]. The nice thing about reinforcement learning is that
it is fairly realistic. As noted in chapter 4, the basal ganglia are thought to mediate a form of reinforcement
learning such that animals learn to maximize reward over time.

There are yet other methods, and machine learning is constantly evolving and adding more techniques
and learning algorithms to its roster of approaches.

Chapter 8

Word Embeddings
Ellis Cain, Jeff Yoshimi

This chapter elaborates on the concept of a word embedding, which was briefly discussed in section 7.3. A
word embedding associates each token in a set of tokens with a set of vectors (see chapter 6) in a way that
that captures important characteristics of the set of tokens. Tokens can include words, word-parts, and other
character sequences, but we focus on words here and it is standard to call these “word embeddings” rather
than “token embeddings” (in fact we will often use “word” interchangeably with “token” simply as a matter
of convenience).1 In this way words can be “embedded” in a vector space, in that a word is associated with
lists of numbers that can in turn be processed by a neural network, and associated with points in a space.

These techniques have a long history in linguistics and in the study of neural networks, but have become
especially prominent in recent years with the advent of large language models (LLMs) like GPT (see chapter
17).

After giving some background on linguistics and natural language processing, we build up to the concept
of a word embedding in stages. First we discuss document embeddings (associating whole documents with
vectors of numbers), which are simpler to understand and serve as a useful basis for understanding word
embeddings. Then we discuss word embeddings and their theoretical backing. Then we discuss the kind of
pre-processing and workflow often involved in actually taking a text and creating an embedding. Throughout
the chapter, we mention connections between text embeddings2 and neural networks, whether the neural
networks are used to create text embeddings or used with text embeddings as the input. Additionally, given
the emphasis on converting words and other linguistic entities to vectors, this chapter overall also sheds
further light on the concept of feature engineering (section 7.3) and “wrangling” data so it can be used in
neural networks.

8.1 Background in Computational Linguistics

Computational linguistics is the study of language using computational methods. Analyzing large amounts
of data and automating analysis for languages for under-documented language are two common applications
of computational linguistics. Word embeddings originate in computational linguistics, and certain tools and
concepts of the field will be useful in this chapter.

Linguistics is the study of language, which can be organized in terms of scale, going from smallest to
largest unit of study:

1. Phonetics and phonology: the study of speech sounds.

2. Morphology: the study of words and word forms.

1The concept of a “token” varies from one context to another. Tokens can also include punctuation, emojis, or word-parts
and character sequences of various kinds. Tokens are usually extracted from a corpus using automated method, for example
byte pair encodings. See https://en.wikipedia.org/wiki/Byte_pair_encoding.

2Formally a word embedding is a function from a set of tokens to a set of vectors, and a document embedding is a function
from a set of documents to a set of vectors. We will use “text embedding” as a generic way to cover both cases.

96

https://en.wikipedia.org/wiki/Byte_pair_encoding

CHAPTER 8. WORD EMBEDDINGS 97

3. Syntax: the study of the structure or grammar, usually at the sentence level.

4. Semantics as the study of meaning, which can be at a variety of levels (words, phrases, sentences).

5. Pragmatics as the study of intentional meaning or implied meaning, such as implicit maxims and rules
of conversations.

All of these levels have been studied using computational linguistics, and most of them have been studied
in relation to neural networks. In some cases, features at these levels are used to generate vector represen-
tations of linguistic data (for example, word embeddings, the focus of this chapter). In other cases, neural
networks have been used to analyze structures at these levels. Here is some more information on each level
and their relevance to neural networks.

For spoken languages, the smallest unit would be the individual speech sounds that are used to create
words. These are known as phonemes, such as the [b] in /bat/ or [p] in /pat/ and are often represented
using specialized symbols of the International Phonetic Alphabet (IPA3). For applications such as speech
recognition or text-to-speech, researchers may need to generate representations of these sounds in vector
form. A simple way of doing this is to manually identify phonological features of phonemes and use them
a binary feature vector, as in figure 8.1, which is based on Elman’s early work [39]. Phonemes can also be
associated with vectors using spectrograms. A spectrogram is a plot that shows time on the x-axis, frequency
on the y-axis, and uses color to indicate the intensity or amplitude at a given frequency. Converting this
data into vector representation can capture the frequency content of phonemes.

Figure 8.1: Some of Elman’s vector representations of phonemes, which involved hand-crafted feature vectors
based on linguistic attributes. This illustrates the general idea that a linguistic item (here phonemes, later
tokens) can be associated with a numeric vector.

The next level up is morphology, which focuses on the smallest units of meanings at the word level
(morphemes). For example, “founded” can be divided into two constituent morphemes “found” and “-ed”.
Morphemes are used in tokenization, particularly with LLMs, such that GPT might have distinct vectors for
“found” and “ed”4. Neural networks sensitive to morphological features have played other roles historically.
For example, Rumelhart and McClelland created a network that took a (phonological representation) of a
verb stem as input and produced the past-tense form as output, e.g. “look” to “looked” or “run” to “ran”
[135].5

Syntax studies the order and hierarchical structures of words in sentences. This includes structures
such as subject-verb-object (SVO) ordering of sentences or prepositional phrase attachment (i.e., “pet the
frog [with the feather]”). Automated methods can be used to organize a representation of a sentence into
grammatical categories (i.e., parts of speech) and to map out the hierarchical grammatical structure. For
example, a treebank (such as the one shown in figure 8.2, associates a sentence with part-of-speech tags that

3See https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
4These types of subtoken vectors assist LLMs with out-of-vocabulary issues because it allows them to recognize/represent

subcomponents of an unknown word.
5Given that the network must learn a regular morphological pattern (verb stem + ed) and also exceptions (e.g. run to ran),

questions surrounding this model and a competing dual process symbolic model were quite prominent for a time (recall the
connectionist / symbolic debate discussed in section 3.3). Some of the debate pertaining specifically to the past tense model is
summarized in [127].

https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

CHAPTER 8. WORD EMBEDDINGS 98

reflects syntactic or grammatical structure and dependency relationships between parts of a sentence. The
question of whether neural networks can deal with grammatical structures has been at the center of the
connectionist / classicist debate (again, see section 3.3).6

Figure 8.2: A treebank for the sentence “The house at the end of the street” which annotates each word
with its syntactic or grammatical category and describes dependencies between parts of the sentence.

What about the meaning of words, or semantics? Since there isn’t generally a clear unit of “meaning”
for words, this meaning level is more broad and nebulous than the others. For example, the meaning of a
word can be abstract or concrete (“justice” vs “cup”) and is often context dependent (“bass” as the fish or
instrument). Thankfully, clever researchers have developed ways to quantify and compare meanings. One
way of modeling meanings that is friendly to neural networks is using vector space or “semantic space”
representations of word meanings, where the meaning of a word is based on its position in a network of
relations [41]. Word embeddings will be the focus of this entire chapter.

The last traditional level of linguistics is pragmatics, which can be understood as the implicit rules for
language use. It is often not the literal meaning of words (i.e., semantics), but rather the meaning behind
the usage. For example, if you asked someone if they studied for the exam, and they said that they “opened
the textbook,” you likely would understand that they mean that they didn’t prepare well for the exam, even
though their utterance does not literally mean that. Grice is well-known philosopher in this area [57, 58], and
there has been a recent trend in using Bayesian statistics to model this type of pragmatics through Rational
Speech Acts [56]. Pragmatics has not been studied much in neural networks, but has become important with
LLMs since they can have actual conversations (see section 17), and it seems likely that in modern LLMs
internal representation of pragmatic structures emerge.

8.2 Document embeddings

Though our focus in this chapter will mostly be on vector representations of words, historically vector
representations of whole documents are important, because they are in some cases simpler and provide a
background for understanding word embeddings.

One simple approach to document embedding is the bag of words approach, which associates documents
with vectors of word frequencies. In these representations we don’t care about the order in which tokens
occurs in a text, hence the term “bag”. This approach ignores grammatical structure and just looks at
how often different tokens occur in different documents. Simply put, we take each document and put the

6Briefly, classicists have argued that grammatical structure relies on a symbolic structure that associates constituents of
sentences with symbols, where those symbols can be moved around and reorganized without changing their structure. It has
been argued that neural networks either fail to have this ability or if they do, simply implement a symbolic structure [47].
It has also been argued that grammatical structure cannot be learned from the relatively limited stimuli available to children
(“poverty of the stimulus” arguments, [13]). Connectionists have responded that grammatical structure can be learned [40] and
that they can deal with compositional structure without being mere implementations of symbol systems [149].

CHAPTER 8. WORD EMBEDDINGS 99

associated tokens into a bag, and count up how many tokens occur in each bag. Consider the following
documents

Document 1 “The bass fish played the bass”

Document 2 “The fish played fish with the fish monger”

Each document will be associated with a bag of words, as shown in figure 8.1.

the bass fish played with monger
Document 1 2 2 1 1 0 0
Document 2 2 0 3 1 1 1

Table 8.1: Bag of words representation

These document-level bag-of-words embeddings have a number of problems. First, they ignore the syn-
tactic structure of the sentences in the documents they encode. Second, they are influenced by the uneven
distribution of certain terms in natural languages [125, 171]. To counteract this, we can use term frequency-
inverse document frequency (TF-IDF), a metric that measures the importance of a specific term to a (set of)
related document(s). TF-IDF combines two components: term frequency (TF), which measures how often
a term appears in a document, and inverse document frequency (IDF), which reduces the weight of terms
that appear in many documents. These components are multiplied together, balancing the term’s relevance
within the document against its distinctiveness across the corpus. The “inverse” in IDF means that terms
found in more documents receive smaller IDF values, reducing their overall influence. This ensures that
TF-IDF focuses on meaningful terms rather than commonly used words like ‘the’ or ‘a’.7

Latent semantic analysis (LSA) is used with a set of documents to analyze semantic information and
calculate document similarity. The set of documents is represented using a document-term matrix, where
each row corresponds to a document, and each column corresponds to the frequency of a given term (like
bag-of-words normalized by dividing each row by the total counts in that row; try doing that for table 8.1).
Then, singular value decomposition (SVD) is used for dimensionality reduction (on dimensionality reduction,
see section 6.3), resulting in a numeric vector for each document (based on term usage/frequency). These
vectors can then be compared using cosine similarity (section 6.4) to get document similarity.

Researchers use these methods to calculate term frequencies in a given document or set of documents.
The document embeddings can then be used to calculate document similarity, as with LSA. As we will see
in the next section, these methods can also be adjusted and applied to the word level as well, allowing us
to quantify word meaning as word embeddings. That is, the methods of document embeddings based on
token occurrence and co-occurrence can be used to come up with word embedding techniques, and these
word embeddings can be used to calculate how similar words are to each other.

8.3 Word embeddings

We now move from document embeddings to word embeddings. In this approach, instead of associating
documents with vectors, we associate words or tokens with vectors. The general idea is that the words are
embedded (or placed) into a vector space, in which the semantic information is captured and represented by
the relative distance to other words in this space. Words that have similar semantic information would be
near each other, and those which are unrelated would be far apart.8

7Here is a slightly more formal definition. Consider a set of documents D, where for each d ∈ D there is a set of terms t ∈ d.
Then for a given term t∗ and document d∗, tfidf(t∗, d∗, D) = tf(t∗, d∗) · idf(t∗, D), where tf(t∗, d∗) is the relative frequency
of the term t∗ in document d∗ (that is, the number of times that term occurs divided by the total number of terms in the
document, and idf(t∗, D) = log N

Zt∗
, where N is the number of documents in D and Zt∗ is the number of times t∗ appears in

some document in D.
8We describe several common approaches to word embeddings here, but there are others. For example, LLMs use a random

embedding (a random association between tokens and vectors) that is trained using gradient descent. In other cases LLMs
themselves are used to produce embeddings.

CHAPTER 8. WORD EMBEDDINGS 100

Figure 8.3 shows seven words embedded in a space. The example illustrates that the relative relations
between tokens are preserved.9 Notice that the creator of a medium (i.e., composer, author, painter) is closest
to the medium or composition (i.e., music, book, painting). Interestingly, “critic” is closest to “author”.

Figure 8.3: Example of a word embedding in a semantic space. Each word is associated with a point in
a space and the distance between points corresponds to semantic similarity. Notice that intuitively similar
words are near each other in this space.

Distributional semantics (DS) provides theoretical support for this approach. According to DS, infor-
mation about a word’s meaning is contained in linguistic context [61, 46] and the statistical properties of
how that word is used (i.e., a distribution of how a word is used). Distributional semantics builds on earlier
usage-based theories of language such as Wittgenstein’s theory of “meaning as use” [168].10 DS is often
illustrated with the following quote, attributed to John Firth: “You shall know a word by the company
it keeps.” For example, when someone talks about a river, they may also mention water or bank (as in
river bank), helping the listener correctly decode the intended meaning. Or, from the quote, you are able
to interpret company as referring to other words in the sentence, and not a business, based on the earlier
context.

8.3.1 Co-occurrence Based Word Embeddings

The high level idea with co-occurrence based embeddings is that two tokens will be close to each other in a
vector space if they tend to appear near the same other words in the training corpus. Words like “nurse”
and “doctor” will be near each other because they both tend to occur near words like “hospital”, “patient”,
or “disease”.11 In other words, because the usage of these words overlap, their meaning should be similar or
related to a certain extent.

Here is an example that illustrates the idea that words with similar meanings should be near each other
in the vectors space they are embedded in (that is, they should have similar vector representations):

Dimension 1 Dimension 2 Dimension 3 Dimension 4 ... Dimension n
Book 0.8 0.1 -0.2 0.5 ... 0.7
Critic 0.6 0.3 -0.1 0.4 ... 0.5
Painter 0.2 0.8 0.4 0.1 ... -0.3
Painting 0.3 0.7 0.5 0.2 ... -0.2
Music -0.1 -0.4 0.9 0.3 ... 0.5
Composer -0.2 -0.3 0.8 0.4 ... 0.6

Table 8.2: Example of a vector space embedding in an n-dimensional space. The top 2, middle 2, and bottom
2 rows correspond to words that are similar and thus vectors that are near each other.

9These were plotted using http://vectors.nlpl.eu/explore/embeddings/en/, which is a helpful interactive page for getting
an intuitive feel for how word embeddings work.

10As Wittgenstein said, “a large class of cases of the employment of the word ‘meaning’... can be explained in this way: the
meaning of a word is its use in the language” (Philosophical Investigations, section 43).

11Thanks to Eric Schwitzgebel for this example.

http://vectors.nlpl.eu/explore/embeddings/en/

CHAPTER 8. WORD EMBEDDINGS 101

Note that the columns themselves (the dimensions of the vector space) don’t have any clear interpretable
meaning12. Generally speaking, word embeddings are trained on a large text corpus (the details of how this is
done using co-occurrences are given below). The resulting embeddings are often quite large, so dimensionality
reduction can be used to create lower-dimensional embeddings. After dimensionality reduction, columns can
no longer be interpreted as co-occurrence with specific terms in the corpus. Rather, it is the pattern across
them that matters, as the relative semantic relationships between tokens are encoded in this semantic space.

The nice thing, again, is that we can actually picture these by projecting from the high dimensional
embedding space to two dimensions and then literally see the distance relationships between tokens, as in
figure 8.3. The generated embedding space is much like our own semantic space [90], with the advantage
that we can track and compare word meanings mathematically and visually.

8.3.2 Co-occurrence Matrices

Based on the distributional theory mentioned above, we can track co-occurrences and usage patterns to
capture the meaning of a set of words. These usages patterns are represented by a co-occurrence matrix. To
construct a co-occurrence matrix, we iterate across every word in a document or training corpus and count its
co-occurrences within a specified context of surrounding words. Each word is treated as a ‘label’ or ‘target’,
while the surrounding words serve as their ‘context’. A window size is defined, which designates how many of
the surrounding words to include in this ‘context’. The context can be either unidirectional, using preceding
text, or bidirectional, using surrounding context in both directions. Once the whole training corpus has been
processed, the result is a co-occurrence matrix where each cell represents the raw co-occurrence counts for a
given label-context pair.

If, at this point, we compare across the rows of related tokens, their co-occurrences should generally be
similar. Still, not every word is used with the same frequency and this may negatively impact the quality
of our word embeddings. Similar to our document embeddings, some words like determiners (‘the’, ‘a’) may
be over-represented and skew the co-occurrence matrix.

Generally, there are two approaches: filtering and normalization. The simplest fix is to simply filter out
these high-frequency, low-impact words. These words are called stopwords, and various NLP packages will
have stopword lists for various languages.

Another approach (usually applied in addition to removing stopwords) is to normalize word embeddings
so that common words don’t drown out the vector representations. A common method is using a positive-
pointwise mutual information (PPMI) transform to weight the matrix.13 PPMI weights co-occurrence values
to avoid word-frequency-bias in embeddings. Words like “the” and “a” that should not be considered
meaningful in terms of co-occurrence are down-weighted. Less frequent words like “shrubbery” or “herring”,
that are more meaningful in terms of co-occurrences, are up-weighted. The result is a set of n-dimensional
vectors for a set of words, which are our “word embeddings.” For a more in-depth explanation and discussion
of word embeddings and distributional semantics, see [87].

8.3.3 Neural Network Based Embeddings

In addition to co-occurrence based methods, neural networks can also be used to create word embeddings. A
well-known example is Word2Vec [102], which trains a simple two-weight-layer feed-forward neural network
to predict targets based on the surrounding context.14 After the network is trained, rows from the first
hidden layer weight matrix are used as the word embeddings.

8.3.4 Geometric Properties of Word Embeddings

One striking feature of word or token embeddings is that we can perform mathematical operations on them
and get semantically meaningful results. That is, the points in the embedding space that correspond to a set
of tokens can be compared using addition, subtraction, and other vector operations (see chapter 6), and the

12See the linear algebra chapter. These columns are sometimes called feature but feature implies something that can be easily
interpreted.

13Lenci [87] explains PPMI as measuring “how much the probability of a target-context pair estimated in the training corpus
is higher than the probability we should expect if the target and the context occurred independently of one another.”

14A code-based walk through of the algorithm is here: https://www.tensorflow.org/tutorials/word2vec.

https://www.tensorflow.org/tutorials/word2vec

CHAPTER 8. WORD EMBEDDINGS 102

results surprisingly capture how humans might conduct ‘operations’ with concepts. A famous paper [103]
analyzed Word2Vec embeddings for hundreds of words, and found that concepts such as gender and plurality
could be captured by directions in the embedding space 8.4. This is the case even though the Word2Vec
network was not explicitly trained to capture these concepts; it is an emergent mathematical feature of the
embedding.15

Figure 8.4: The left panel shows that the vectors between “man” and “woman”, “uncle” and “aunt”, and
“king” and “queen” all point in the same direction. Thus gender appears to captured by a specific direction
in the embedding space. The right panel shows a similar idea for the concept of a plural: the vectors between
nouns and the plurals generally point in the same direction.

In more detail, the vector difference between word embeddings that are related in similar ways are often
vectors that point in the same direction (see table 1 of [103] for more examples):

• vapple − vapples ≈ vcar − vcars

• vwalking − vwalk ≈ vswimming − vswim

• vking − vqueen ≈ vman − vwoman

• vgood − vbetter ≈ vrough − vrougher

• vsee − vsaw ≈ vreturn − vreturned

Using basic vector arithmetic we can derive surprising and fun relationships from those listed above which
hold in the vector space, for example:

• vapple − vapples + vcars ≈ vcar

• vking − vqueen + vwoman ≈ vman

As a reminder, these are directions in a high-dimensional space, in these models over 300 dimensions
(current transformers often use embeddings with over 10,000 dimensions).16 If we think of these vectors as
hands on a clock, you might think we’d quickly run out of useful directions, but given that we are in high
dimensional hyperspheres there are plenty of directions to go around.

8.3.5 Evaluation of Word Embeddings

How do we know that a given word embedding accurately captures the meaning of a set of tokens? How can
word embeddings be evaluated? Previous research on word similarity and relatedness has shown that directly
asking for relatedness judgments can accurately capture word relations [45]. Therefore, one general method of

15The way the analysis worked was that a set of analogical relationships, like “year is to years as law is to laws”, were
formulated. For each of these relationships the last term in the analogy (here “laws”) is searched for where the vector approach
would predict it is. The word closest to this point (by cosine similarity) is identified, and can be compared with what is known
to be the correct item. In this way an accuracy metric can be computed. Accuracy scores of 62.2 % are obtained for verbs in
the original paper, and higher accuracy has been obtained in subsequent embedding models such as Glove [124].

16It has been shown that after about 300 dimensions the accuracy for the analogy task used in these types of analysis levels
off [124].

CHAPTER 8. WORD EMBEDDINGS 103

evaluation is by collecting a set of human judgements and using them to evaluate a given embedding relative
(though some have questioned this approach, e.g. [130]). These can be thought of as placing a ceiling on the
performance of an embedding. Several “gold standard” usage databases exist, such as WordSim-353 [45, 2].

However, recent models (pre-LLM) had already reached or surpassed human performance on tasks such as
similarity evaluation. Since the models have reached or surpassed theoretical performance ceilings based on
human judgments, how can future improvements be evaluated? In response to this situation, Felix Hill and
colleagues [67] set out to create a standard that separates similarity from association (previous standards had
ignored the distinction). Association refers to relatedness between two concepts, whereas similarity refers
(almost) to synonymy. For example, “car” and “tire” would be considered associated but not similar, while
“glasses” and “spectacles” are similar. While these issues are less prominent with LLMs, research remains
active creating new and better benchmarks for model evaluation [22].

Corpus quality also has an impact on model performance. Larger training corpora generally improve
the quality of the derived embeddings, since the increased amount of data ideally adds more context to be
processed. GloVe embeddings are trained on various training corpora, varying from 1 billion tokens to 42
billion tokens [124].

Besides the amount or size of the training corpora, the type of documents is also important; training
solely on works of fiction would lead to different embeddings than a model trained on non-fiction, and so on.

8.4 Workflow: Creating Word Embeddings

In practice there are many steps involved in applying these ideas. Here is a sample workflow or pipeline:

1. Sentence segmentation.

2. Word tokenization

3. Normalization and filtering

4. Creation of word embeddings

To get a sense for how this works, let’s apply this pipeline to a sample document:

My work is a matter of fundamental sounds, made as fully as possible. Even though they are
fundamental, they bring rich aromatic hints of humor. If people want to have headaches among
the overtones, let them. And provide their own aspirin. (Adapted from a letter from Samuel
Beckett to Alan Schneider, 1957)

8.4.1 Sentence segmentation

For sentence segmentation, the paragraph or document is segmented into sentences. This step is particularly
important when using text that has been scanned using optical character recognition (OCR), where errors
might occur. Our sample document would be segmented into four sentences (given that we are segmenting
just on periods):

1. My work is a matter of fundamental sounds, made as fully as possible.

2. Even though they are fundamental, they bring rich aromatic hints of humor.

3. If people want to have headaches among the overtones, let them.

4. And provide their own aspirin.

CHAPTER 8. WORD EMBEDDINGS 104

8.4.2 Word tokenization

Once the document has been segmented into sentences, a tokenizer is used to split each sentence into the
comprising words. This yields a list of lists of tokens, as in

1. my, work, is, a, matter, of, fundamental, sounds, made, as, fully, as, possible

2. even, though, they, are, fundamental, they, bring, rich, aromatic, hints, of, humor

3. if, people, want, to, have, headaches, among, the, overtones, let, them

4. and, provide, their, own, aspirin

8.4.3 Normalization

Following tokenization, the words/tokens are generally normalized to remove capitalization or certain punc-
tuation marks, such that the words are consistently in the same form. In this step, stopwords can be filtered
out. In our case:

1. work, matter, fundamental, sounds

2. fundamental, bring, rich, aromatic, hints, humor

3. people, headaches, overtones

4. provide, aspirin

8.4.4 Create the word embeddings

For a basic word embedding algorithm, the label-context pair co-occurrences are tracked in a co-occurrence
matrix. For the first sentence, we would start with “work” as the first target. Then, given a bidirectional win-
dow size of 2, the surrounding context would be “matter” and “fundamental”. Therefore, the co-occurrence
pairs would be [work, matter] and [work, fundamental]. We would then create a co-occurrence matrix, with
targets on the rows, and context on the columns. After processing the first sentence, the co-occurrence
matrix can be seen in table 8.3:

Targets work matter fundamental sounds
work 0 1 1 0
matter 1 0 1 1
fundamental 1 1 0 1
sounds 0 1 1 0

Table 8.3: Co-occurrence matrix. Each word vector would be a row in the matrix. Note that this is only for
the first sentence.

Once every sentence has been processed, the final co-occurrence matrix can be seen in figure 8.5.
After processing the whole document and calculating a co-occurrence matrix, we would use PPMI to

weight the vectors (recall that PPMI is used to normalize word embeddings so that common words don’t
drown out the representations). The result can be seen in figure 8.6.

8.4.5 Using a word embedding to make a document embedding

Of course word embedding can be used to generate document embeddings, simply by associating each token
in a document with its vector embedding and concatenating the result. Thus we can associate a whole
document with a matrix, where each row is the vector embedding for one word or token in the document.
A prominent example where this idea is used is with LLMs like ChatGPT (see chapter 17), where a context
window — a set of prompts and responses — is converted into a matrix using a vector embedding. Let’s
take a small, brutish context window: “dog chases cat and cat chases dog!”. First we tokenize the input,
then associate each token with an index, like this (notice that the punctuation mark is a token):

CHAPTER 8. WORD EMBEDDINGS 105

Figure 8.5: Co-occurrence matrix for the example sentences. Bidirectional window size of 2, without PPMI.

Figure 8.6: Resulting co-occurrence matrix after PPMI has been applied. Bidirectional window size of 2.

3 1 4 5 2 1 3 6
dog chases cat and cat chases dog !

Now we can take each integer and associate it with a row of an embedding matrix, like this, shown here
with integer labels on rows to make the idea clear.

1 0.5 0.1 0.3
2 0.2 0.4 0.6
3 0.7 0.8 0.9
4 1.0 1.1 1.2
5 1.3 1.4 1.5
6 0.3 0.1 1.2

If we take each token and the corresponding row for it, and stack the results vertically, we end up with

a matrix representation of a set of words (that is, a document, or in an llm, a context window), like this:

0.7 0.8 0.9
0.5 0.1 0.3
1.0 1.1 1.2
1.3 1.4 1.5
0.2 0.4 0.6
0.5 0.1 0.3
0.3 0.1 1.2

CHAPTER 8. WORD EMBEDDINGS 106

So there’s our vector embedding for the document, what we can a “word embedding matrix” or a “token
embedding matrix”. This matrix is suitable for processing in a neural network, like an LLM.

You should confirm that the token embedding matrix above makes sense, that each row corresponds to
the corresponding token in the sentence “dog chases cat and cat chases dog!”

Chapter 9

Unsupervised Learning
Jeff Yoshimi

9.1 Introduction

Unsupervised learning is learning without a teacher. It is a method for changing the weights of a network
without telling a network what we want it to do (that is, without consulting target data or “labels”; see
chapter 7). You set a neural network loose in an environment (which usually means exposing it to a bunch
of samples from a table of input vectors) and see what it comes up with. How can a neural network adapt
to an environment on its own, without being told what to do? How can it “self-organize”? Given how
often animals find themselves in this situation—of not having a teacher around—it’s an important topic.1

It turns out that unsupervised learning algorithms are quite powerful, both as engineering tools in machine
learning and also as a way of modeling the development of certain types of neural circuits and psychological
capacities.

We begin the chapter with a discussion of Hebb’s rule, a classic associative learning rule that allows us
to associate paired stimuli. We consider how Hebb’s rule and its variants can be used to create feed-forward
pattern associators. We then consider how a Hebbian-type rule (Oja’s rule) allows layered networks to
achieve dimensionality reduction, where one layer extracts the most statistically important information from
the previous layer. Finally, we review competitive learning algorithms that can be used to associate output
neurons with clusters in an input space. This culminates in a discussion of self-organizing maps, which can
be used to model certain features of the cerebral cortex and can also be used as a machine learning tool.2

In chapter 11, we consider how unsupervised methods can be used to train recurrent networks.

9.2 Hebbian Learning

Learning in a neural network corresponds to adjustment of its weights by application of a learning rule. A
learning rule is a method for updating the weights of a neural network over time. It is the counterpart to an
activation function (chapter 5), but it acts on the weights between nodes rather than on the activation levels
of the nodes. Some learning rules are visible in Simbrain by editing a weight and consulting the update rule
drop-down box.

A learning rule for weight wj,k can be written as a delta value, ∆wj,k, meaning “change in strength of
weight wj,k” (the symbol ∆ is often used to describe changes in a variable). At any time step, you simply
add the current value of ∆wj,k to the weight’s current strength to get the weight’s new strength at the next

1Of course, animals do experience unconditioned rewards and punishments and their learning is in that sense “supervised.”
Skinner famously thought this was enough to explain all animal behavior, and this is the basis of reinforcement learning (RL)
approaches. So that form of supervised learning still has a chance, though RL researchers often also draw on unsupervised
methods.

2There is a lot more to unsupervised learning than what is covered here. For an overview in the context of machine learning,
see http://scikit-learn.org/stable/unsupervised_learning.html.

107

http://scikit-learn.org/stable/unsupervised_learning.html

CHAPTER 9. UNSUPERVISED LEARNING 108

time step. If we let a prime symbol ′ indicate the next time step, then we have this rule:

w′
j,k = wj,k + ∆wj,k

It’s quite simple. The strength of the weight wj,k at the next time step will be equal to its current value
plus some delta value. It’s just addition. For example, if w1,4 = −1 and ∆w1,4 = 4, then w′

1,4 = −1 + 4 = 3.
Hebbian learning is one of the oldest and simplest learning algorithms for neural networks. It is bio-

logically plausible (it is based on Long Term Potentiation, discussed in chapter 4) but has limitations that
prevent it from being widely used in its basic form (variants of the Hebb rule are, however, widely used).

The basic idea of Hebbian learning is that when connected neurons are both active, the weight connecting
them is strengthened. You know the slogan: “neurons which fire together, wire together.” Donald Hebb
proposed this idea in the 1940s, before there was experimental support for it. As he put it:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased [65].

Formally, the Hebb rule states that the change in a weight wj,k at a time is equal to the product of a
learning rate ϵ, the source node’s activation ak, and the target node’s activation ak.

∆wj,k = ϵajak

The learning rate ϵ controls the rate at which the weights change each time the rule is applied (each time we
press “step” in Simbrain). If we set ϵ = 0.00002, the weights will change very slowly. If we set ϵ = 10, they
will change very quickly. Note that we can stop learning by setting ϵ = 0 (in which case ∆wj,k will always
be 0). Most of the learning algorithms we consider will have some sort of learning rate. Learning rates are
usually set between .01 and 1.

When nodes j and k are clamped (so that their activations can’t change), the rule is especially easy to
apply. It is simply the product of the two nodes’ activations times the learning rate. If both neurons have an
activation of 1, then at each time step we simply add the learning rate to the weight. For example, if aj =
1, ak = 1,∆wj,k = 1 , then at time step the weight strength will increase by 1. If aj = 1, ak = 1,∆wj,k = .5,
then at time step the weight strength will increase by .5.

Notice that if both the source and target node activations of a Hebbian weight are positive, then the
weight’s value will increase (they “fire together” so they “wire together”). If one activation is positive and
one is negative, the weight will decrease. If both activations are negative, they will also increase (since a
negative number times a negative number is positive).3 If either activation is 0, the weight will not change,
which is an important baseline case: neurons that don’t fire, don’t wire! Most our neurons are quiet most of
the time, and thus the synapses connected to them don’t change.

Making a simple Simbrain network to test and explore these ideas is easy. Create two nodes and connect
them with a weight. Double click on the weight, set its update rule to Hebbian, and set the learning rate to
whatever you desire. Clamp both nodes. Now when you run the network, you will see the weight change:
it gets larger when both nodes are negative or positive, and lower when one node is negative and the other
is positive. The rate of change is set by the learning rate. The weight will generally just “explode”, i.e.
increase or decrease indefinitely. In Simbrain, the weight strengths are bounded, so they will often just race
towards these bounds.

Example 1. Suppose we have two nodes with activations a1 and a2, and that the activations of the nodes
are clamped. Further suppose we have

The activations on the nodes: (a1, a2) = (1, 2)
The weight: w1,2 = −1

and that the learning rate is ϵ = 0.5. What will the value of the weight be after three time steps?

3The negative-positive and negative-negative cases are biologically implausible but still useful in many algorithms.

CHAPTER 9. UNSUPERVISED LEARNING 109

First, we compute ∆w1,2, the amount that the weight will change at each time step:

∆w1,2 = ϵ · a1 · a2 = (0.5)(1)(2) = 1

The value of ∆w1,2 never changes because the activations are clamped. So the weight of w1,2 will change by
∆w1,2 = 1 for each of the time steps. Since w1,2 begins at −1, it will be 0 after the first time step, it will be
1 after the second time step, and it will be 2 after the third time step. Answer: w1,2 = 2.

Example 2 You can see from the previous example that over time the weights will go towards extreme
values with the Hebb rule. This is a problem with Hebbian learning: it tends to push weights towards
positive or negative infinity. One way to slow this down is to use a smaller value for ϵ. Suppose in example 1
that ϵ = 0.01. What would the values for the weight be at each time step? Answer: Time 1: w1,2 = −0.98,
Time 2: w1,2 = −0.96. Time 3: w1,2 = −0.94.

9.3 Hebbian Pattern Association for Feed-Forward Networks

A classic use of the Hebb rule is to model pattern association. The underlying idea is simple: when an agent
perceives multiple stimuli at the same time or nearly the same time (what the classical British empiricists
discussed in chapter 3 called “contiguity in time and place”), we tend to associate them. If you often hear
a song while being around some person, you may come to associate the two. The song may later remind
you of that person.4 If a dog hears a bell just before receiving food, it will associate the two. Thus classical
conditioning can, to a first approximation, be explained by the Hebb rule.5 But we will see that simple
Hebbian pattern associators are problematic, so the rule must be supplemented in various ways.6

We begin by considering pattern association in feed-forward networks. Feed-forward networks can be
thought of as functions that take a vector (a list of numbers; see chapter 6) as input and produce a vector
as output. A multiple layered feed-forward network computes a series of vector-to-vector transformations
based on the intervening weights (which, recall, can be represented by weight matrices).7 As the weights in
this network change, the way it associates input vectors with output vectors changes. That is, the function
associated with a feed-forward neural network changes as its weights change.

The Hebb rule can be used to train a feed-forward network to learn a set of pattern associations, and
thereby to approximate a function between a set of input vectors and a set of output vectors. The basic idea
is simple. We simply set the (clamped) input and output nodes to the patterns we desire, and then apply
the rule.

Suppose we want to use the Hebb rule to train a network to learn the following three associations:

• (1, 0, 0) → (1, .4)

• (0, 1, 0) → (.8, .3)

• (0, 0, 1) → (.5, .7)

4Associations like these are a common literary theme. Marcel Proust’s epic Remembrance of Things Past is a thousands-
of-pages long novel that begins with memories inspired by the smell of a cookie, a “crumb of madeleine” [128]. Gabriel Garćıa
Márquez’s Love in the Time of Cholera, opens with “It was inevitable: the scent of bitter almonds always reminded him of the
fate of unrequited love.”

5An actual model of the conditioning is the Rescorla Wagner model, which influenced the development of similar models in
reinforcement learning. Both can be explored in Simbrain. See the scripts rescorlaWagner.bsh and actor critic.bsh.

6 It should be noted that Hebbian pattern associators (especially feed-forward pattern associators) are really in a gray area
between unsupervised and supervised learning. They are unsupervised in that there is no explicit teacher. However, in practice,
we often clamp the nodes of these network using desired outputs. From an unsupervised perspective, we can think of this as
values that were set “by nature” (e.g. the sound of a song in one neural population, and sight of a friend in another neural
population), so it can still be thought as unsupervised, and it is still the case that there there is no explicit training signal.
Also, the Hebb rule is a natural place to start in our study of unsupervised learning. So we cover Hebbian pattern associators
here, even though they are on the cusp between the two types of learning.

7Recall from algebra that a function is a rule that associates objects (usually numbers) in a domain with unique objects
(usually other numbers) in a range. For example f(x) = x2 associates real numbers with positive real numbers: f(2) = 4,
f(−1) = 1, and f(0) = 0. We can also think of feed-forward neural networks as computing functions, which associate input
vectors with output vectors. For example, a network with 3 input nodes and 3 output nodes takes 3-dimensional input vectors
with 3 dimensional output vectors. It can be thought of as a rule which associates vectors in a three-dimensional vector space
with vectors in another three-dimensional vector space.

CHAPTER 9. UNSUPERVISED LEARNING 110

Something like this can occur in the brain. We can imagine that one population of neurons receives one
kind of input (e.g. auditory signals from a song, or olfactory signals from a bowl of bitter almonds) and
another part of the brain receives another kind of input (e.g. visual inputs corresponding to a person). The
Hebb rule says that since these two populations of neurons are both firing at the same time, an association
should form between the two patterns. I often smell bitter almonds when around that person, so later, when
I am around bitter almonds again, it arouses a visual memory.

To build this kind of model in Simbrain, take the following steps:
(1) Create the network. Follow the template shown in figure 9.1. Make all the neurons clamped, the

output neurons linear, and set all weights to Hebbian with a learning rate of 1. Also, initialize the weights
to a value of 0 by pressing w then c.

(2) Train the network. Set the input and output nodes to their desired values. Now iterate Simbrain
once. The weights will be updated according to the Hebb rule, and our first association has been formed.
You will notice the synapses change color and size. Repeat this process exactly once for each association.

Figure 9.1: Learning one association in a feed-forward network using the Hebb rule.

(3) Test the network’s ability to recall patterns. Now we want to test the network to see how well it
can recall these associations. Will it recall the right target pattern given a source pattern? Has it properly
implemented the vector-valued function above? To test the network, we need to do two things. First, we
must unclamp the output neurons. Second, we must stop the weights from changing by clamping them
(a clamped weight is the same as a clamped node; when weights are clamped, their value no longer
changes). Now we are ready to test. For the first input pattern, set the input nodes to (1, 0, 0), and iterate
the workspace. The output neurons should produce the correct pattern, (1, .4). Similarly for the other
input-output pairs.

Notice that this particular Hebbian pattern associator associates localist category vectors (one-hot vec-
tors) with distributed feature vectors. This is similar to what is sometimes called a generative model,
that is, a model that can be used to generate prototypical features given a category label. But for the rest of
this chapter, we will “reverse” the situation, focusing on discriminative models that associate distributed
feature vectors with one-hot categorical or localist vectors. (On generative vs. discriminative models, see
chapter 7).

The simple Hebb rule, used as a pattern associator, is extremely brittle. Consider the following drawbacks
of the method we used to train the associator.

First, we had to carefully clamp and unclamp the nodes and weights in a sequence. In fact, the method
we used is almost like a form of supervised learning (chapter 12), because we carefully set the output nodes
to target values. In a living network, no such clamping and unclamping occurs. The learning just happens
automatically.

Second, we only updated once. If we had kept running the network, the weights would keep getting larger
and the correct associations would have been wiped out.

Third, we used orthogonal input vectors. Recall from chapter 6 that orthogonal vectors have a dot
product of 0. For example, (1, 0) and (0, 1) are orthogonal because (1, 0) · (0, 1) = 1× 0 + 0× 1 = 0. One-hot
encodings (see chapter 7), where just one node is on and the others are off, are an easy way to obtain
orthogonal inputs. One-hot input vectors give rise to learning on completely different weights. The vector
(1, 0, 0) only changes the weights fanning out from the first input node. The vector (0, 1, 0) only changes
weights fanning out from the second node. On the other hand, if input vectors are not orthogonal, then

CHAPTER 9. UNSUPERVISED LEARNING 111

they interfere with one another and we are no longer guaranteed perfect recall. This is sometimes called
cross talk. To see this, try repeating the example just given, but using input vectors (1, 1, 0), (0, 1, 1) and
(1, 1, 1). You will not get good results, because the input vectors overlap. In general, the degree of cross-talk
in Hebbian pattern association is proportional to how similar the input vectors are.8

In practice, more robust variations on Hebb’s rule are required to model conditioning and associative
learning (see note 5). But this example still gives a flavor of how Hebbian learning works and what it can
do.

9.4 Oja’s Rule and Dimensionality Reduction Networks

We have seen that the Hebb rule tends to make weights explode to their maximum or minimum values. One
solution to this problem is to update all the fan-in weights on a node together, and to update them using
Hebb’s rule and then rescale the weights so that they sum to 1 (see chapter 7); this is sometimes called
“renormalizing” the weights). This prevents the weights from “blowing up” and means that what matters
in a set of weights is just the relative size of each weight. This kind of computation can also be done locally.
This is done using Oja’s rule.9

One thing that Oja’s rule can do is dimensionality reduction. Recall from chapter 6 that dimensionality
reduction is a way of taking high dimensional data and representing it, usually with some distortion, in
a lower dimensional space. We have seen how dimensionality reduction helps us to analyze data from
neural networks. But it turns out that feed-forward neural networks can also implement dimensionality
reduction. Suppose you have a feed-forward network with 3 input nodes and 1 output node. This is a form
of dimensionality reduction! It’s a way of taking vectors in a space (the input space) and projecting them to
a lower dimensional space (the output space). We can call feed-forward networks where there are more input
nodes than output nodes dimensionality reduction networks. A random 3-1 network might not do any
significant type of dimensionality reduction, but it does take a set of points in a 3-dimensional input space,
and for each of them produce some point in a 1-dimensional output space. So we have a 3-1 dimensionality
reduction network.

Figure 9.2: An illustration of Oja’s rule for dimensionality reduction. Two of the input nodes produce random
noise, and the third produces a sine wave. Think of each output node as performing a 3-to-1 dimensionality
reduction. The output node on the left was initialized with fixed random weights that don’t change. The
output node on the right has weights trained by Oja’s rule. Time series for two output nodes are shown in
the middle and right panels. Notice that the node with weights trained by Oja’s rule extracts the sine wave,
which is the most informative part of the 3-dimensional input signal.

When Oja’s rule is used on a set of fan-in weights, the resulting network performs a meaningful type

8For a more detailed discussion, see [42], p. 105.
9The formula is ∆wj,k = ϵak(aj − akwj,k).

CHAPTER 9. UNSUPERVISED LEARNING 112

of dimensionality reduction, specifically PCA (Principle Components Analysis).10 This is the same method
used by default in the Simbrain projection component, so it is something you may already have some intuitive
familiarity with.

An example illustrating one use of Oja’s rule is shown in Fig. 9.2. Two of the input activity generators
produce random values, and the third produces a sine wave. In the 3-dimensional input signal the output
nodes are receiving, the sine wave is the principal part. We’d like to be able to recover just the sine wave.
That’s what Oja’s rule does to the extent that it implements PCA. The output node on the left has fixed
random weights. The output node on the right has weights trained by Oja’s rule. Think of these as two
3-to-1 dimensionality reduction networks. Notice that the time series plot of the activation of the node on
the right shows the sine wave, but the time series plot on the left does not.

Something like this may be what’s happening in the human brain. Hebb-like learning rules have been
shown to operate in the brain (LTP, LTD, STDP, etc.; see chapter 4). Moreover, it is known that suc-
cessive layers of cortical network extract increasingly refined and informative signals from preceding layers.
Something like Oja’s rule might be at work during this extraction, but it remains an open question.

9.5 Competitive learning

We now consider a second general type of unsupervised learning, competitive learning, where networks
automatically detect statistical tendencies in an input environment. The Hebb rule was able to pick up
associations between inputs and outputs automatically, but it was brittle. Competitive learning is much
more robust, and it works in a purely unsupervised way (with the Hebb rule we imagined something else
was setting the output values of the network).

Competitive networks are feed-forward networks where each output node “competes” with the others to
represent a certain class or “cluster” of inputs in the input space. For example, in a world of cheese and
flowers, a competitive network will automatically learn to represent cheeses and flowers with different nodes,
without being told about the difference (see Fig. 9.3). It just develops a sense over time that cheese and
flowers are different.

Something like this also happens in the brain. Neurons automatically come to represent features of an
animal’s sensory environment over time, even without a teacher. For example, neurons in the visual cortex
learn to respond to specific types of edges, and neurons in auditory cortex learn to respond to specific
frequencies of sound. They do this without targets, labels, or “desired outputs”; they learn to represent
these features only based on the input dataset provided by nature.11

In machine learning, clustering algorithms do something similar to competitive networks, automatically
detecting clusters of similar input vectors in an input space.12 I like the example of a streaming movie service
like Netflix. Netflix can look at a lot of movies, code the movies as vectors (which contain attributes about
each movie and who tends to watch that movie). Then they can run an unsupervised clustering algorithm
to automatically lump similar movies together. Then the people at Netflix can hand-label those clusters,
with names like “Zombie Horror”, “Quirky romance”, and “Drama with a strong female lead.”

9.5.1 Simple Competitive Networks

There are different approaches to competitive learning, both in machine learning and cognitive science. We
begin with simple competitive networks, which can be easily created in Simbrain using insert > network >
competitive, or by opening a workspace or script that begins with “competitive.”

Recall from chapter 6 that the input nodes of a network define an input space, which corresponds to
the set of all patterns (input vectors) that could occur on those nodes. Each pattern of activations over the
input nodes of a network is a point in its input space. Often these sets of input vectors have some structure:
in a smell network, for example, objects that produce similar odors will produce similar input vectors, which
correspond to “clustered” points in the input space.

10Some background on PCA and how it works, and some of the other dimensionality reduction methods included with
Simbrain, is here: http://hisee.sourceforge.net/about.html.

11Although it is worth noting that plausible feature detectors in the brain can also be developed using supervised learning,
as with the deep network shown in figure 4.7 in chapter 4.

12This is how algorithms like k-means and dbscan work; see http://scikit-learn.org/stable/modules/clustering.html.

http://hisee.sourceforge.net/about.html
http://scikit-learn.org/stable/modules/clustering.html

CHAPTER 9. UNSUPERVISED LEARNING 113

A competitive network will automatically learn to represent these clusters. The key idea that makes this
possible is the fact that the input space has the same number of dimensions as the fan-in weight space for
each output node. For example, in Fig. 9.3, the input space is 5-dimensional, and each of the three output
nodes has a fan-in weight vector with 5 weights. Thus, each of the fan-in weight vectors can be represented
in the same 5 dimensional input space. As the network learns, the fan-in weight vectors are updated in such
a way that they become closer to specific clusters of inputs. In this way, different output nodes come to
respond to different clusters of inputs. Thus, the output nodes are trained to be cluster detectors.

The basic idea is shown in Fig. 9.3 and Fig. 9.4. Each time the agent smells an object, a pattern of
activity occurs over its 5 nodes, which is a point in a 5-dimensional input space. We can project these points
to 2 dimensions, and then view them as in Figure 9.4. Each point corresponds to one smell.13 At any time,
only one output node in a competitive network is active. It is the winner of a winner-take-all competition
(see chapter 1). The winning node relative to the current input is the one whose fan-in weight vector is
closest to that input in the input space. The outputs are one-hot encoded, (see chapter 7) and the winning
or “hot” output at a given time can be thought of as classifying inputs. The basic way a competitive network
works, after it’s been trained, is illustrated by the Simbrain 3-object-detector (discussed in section 1.2). The
three nodes of that network respond to three different kinds of inputs in the input space.

Figure 9.3: Competitive network with 3 output nodes, which can learn to detect up to 3 clusters in an
5-dimensional input space. Inputs correspond to smells of flowers. Once the network has been trained, the
output nodes can be labelled. Which output node ends up classifying which type of smell will change from
one run to another of this network.

The way a competitive network learns can be understood visually in terms of the input space of the
network. In Fig. 9.4, each blue dot corresponds to an input, and each red dot corresponds to the fan-in
weights to an output node. When an input (blue dot) is fed to the network, the nearest output node (red
dot) is the node that will turn on. As the network learns, the red dots move to the centers of the clusters.
In this way, the output nodes become cluster detectors.

Now we can say in more detail how competitive learning works. The competitive network is initialized
with random weights. Thus, the red dots in Fig. 9.3 begin at random locations in the input space. When we
start to apply the algorithm, input vectors (the blue points in the input space) are presented to the network
in succession. At a given iteration, whichever fan-in weight vector is closest to that input vector “wins the
competition” (hence the name “competitive learning”), and that weight vector is changed in such a way that
it is moved closer to that input vector in the input space. Hence, that output node will be more likely to
respond to that input in the future.

Here is the algorithm in more detail. For each row vector in the input dataset:

1. Use the row vector to set the input node activations.

13We could also use a table of inputs, in which case each row of the table, each sample, would be a point. This is how
competitive learning is usually done in machine learning; in Simbrain, if you double click on a competitive network’s interaction
box, a training data tab appears that can be used to train the network in this way.

CHAPTER 9. UNSUPERVISED LEARNING 114

Figure 9.4: Geometrical illustration of how competitive networks learn. If we think of this as a representation
of the smell inputs in Fig. 9.3, then each blue dot corresponds to one smell from one location in the virtual
world, and the three clusters correspond to the three objects: Swiss cheese, Gouda, and the blue flower.

2. Determine the winning output node, which is the output whose fan-in weight vector is closest to the
input vector in the input space.14

3. Assign the winner a value of 1 and the losers a value of 0.

4. Move the fan-in weight vector of the winning unit towards the current input in the input space. That
is, update the weights attaching to the winning neuron, so that that neuron is more likely to fire in
response to the same inputs in the future.

By repeated application of this algorithm, the fan-in weight vectors (the red dots) will incrementally move
towards the input vectors closest to them. Over time, they will migrate towards the “centers” of the clusters
in the input space. In this case, each red dot migrates towards the center of one of the three clusters of blue
dots. After training, each of the three output neurons has come to represent one cluster of inputs. Each
output neuron will now fire in response to any input in the cluster around it. This shows visually the sense in
which the outputs have come to represent the statistics of the input space. Each output is tuned to respond
to a given cluster of inputs.

The network will also generalize well: any new input near one of the clusters will activate the neuron for
that cluster.

This process can be simulated in Simbrain using the workspace competitiveNetSmells.zip. When you
open the workspace, you will see a competitive network with four outputs and a world with 6 objects. Each
object is represented by a distributed pattern of activity on the input nodes. The 6 objects—3 cheeses and
3 flowers—correspond to 6 well-separated points in the input space. With training, 6 of the 9 output nodes
should begin to respond to these inputs.

Now press play and just move the mouse from object to object. The mouse is simply smelling different
things in its environment and not being told how to respond (so this is a nice case of unsupervised learning).
As you move the mouse around, the network will start responding to the different inputs in different ways.
Eventually, it should respond to each of the different inputs with a distinct output. The output nodes get
“assigned” to these different inputs with learning. To make this clear, you can label the nodes appropriately
and verify that the network has indeed learned to separately represent the different objects. So the mouse
has learned something about the statistics of its environment without any training signal, assigning a distinct
representation to each of four different distributed inputs.

14That is, the output node with the greatest weighted input.

CHAPTER 9. UNSUPERVISED LEARNING 115

9.5.2 Self Organizing Maps

A more sophisticated form of competitive learning is a Self organizing map (or SOM). The overall idea
with this architecture is the same as with a simple competitive network: inputs are compared with fan-in
weight vectors, a winner is chosen, and that winning neuron’s fan-in weight vector is modified so that it
“moves” closer to the input and thus comes to represent that input. Over time the output nodes come to
represent specific regions of the input space [78].

The new idea with a SOM is to update the weights not just around the winning node, but also in a
neighborhood around the winning node. A honeycomb pattern—a hexagonal array—is used on the output
layer so that all nodes are equally distant from their nearest neighbors. A special algorithm is used whereby
the size of this neighborhood starts is reduced over time. The result is that nearby nodes come to represent
similar inputs. Thus, a bank of output nodes in a SOM network correspond to a kind of “map” of the input
space. Output nodes that are near each other detect similar patterns in the input space [78].

Figure 9.5: A self organizing map after it has been trained for several hundred iterations, with some of the
categorizations it produces hand-labelled.

Fig. 9.5 shows an example of a self-organizing map in Simbrain, which is based on the workspace
somNetSmells.zip. As with the simple competitive network, you can just run the network and drag the
mouse around to the different objects. This simulates a sped-up process of human learning. As you run
the simulation, notice that the neighborhood size (in pixels) and learning rate are being reduced. When the
learning rate goes to 0, no more learning will occur, so be sure to expose the network to multiple inputs
before that happens. If needed, you can right-click on the interaction box and select Reset SOM Network.
After a while, the network will stabilize. At that point, you can move the agent around to the objects, see
which nodes respond to them, and then label those nodes. I’ve done just that in Fig. 9.5. Notice that the
three cheese and flower nodes are near each other in the hexagonal array of output nodes. Again, nearby
nodes in the output layer correspond to nearby regions of the input space, which corresponds to objects that
smell similar to each other.

SOMs are often represented only by their output nodes (that is, input nodes are omitted), since it is at
the output nodes that the spatially organized maps take form. For example, in Fig. 9.6 we see a top view of
a large sheet of millions of neurons in the brain that are thought to behave like the output layer of a SOM,
and in Fig. 9.7 we see a top view of 150 nodes in the output nodes of a SOM.

Recall from chapter 4 that the brain is known to develop feature representations in a spatially organized
way, via topographic maps. It is plausible to assume that some of these maps develop in an usupervised way
over many years as a person interacts with their environment.15 In visual cortex, for example, neighboring

15Though again we also saw that it can happen in a supervised way with deep networks.

CHAPTER 9. UNSUPERVISED LEARNING 116

neurons in retinotopic maps come to represent lines at similar angles (see Fig. 9.6). In somatosensory cortex,
neighboring neurons in somotatopic maps represent nearby regions of the body. In fact, spatially organized
feature maps have been identified in most sensory areas of the brain. Kohonen (1990), p. 1465, reviewing
the literature at the time, says:

Some of the maps, especially those in the primary sensory areas, are ordered according to
some feature dimensions of the sensory signals; for instance, in the visual areas, there are line ori-
entation and color maps, and in the auditory cortex there are the so-called tonotopic maps, which
represent pitches of tones in terms of the cortical distance, or other auditory maps. One of the
sensory maps is the somatotopic map, which contains a representation of the body, i.e., the skin
surface. Adjacent to it is a motor map that is topographically almost identically organized. Its
cells mediate voluntary control actions on muscles. Similar maps exist in other parts of the brain.
Some maps represent quite abstract qualities of sensory and other experiences. For instance, in
the word-processing areas, neural responses seem to be organized according to categories and
semantic values of words. It thus seems as if the internal representations of information in the
brain are generally organized spatially (p. 1465; numerous citations included in the original quote
are omitted here) [78].

Figure 9.6: Topographically organized edge detectors in visual cortex. The main panel shows a top-down view
on an area of cortex, with neurons colored according to what kind of edge they represent. To the right of the
panel these edge orientations are shown. Notice that nearby neurons represent similar edges, that is, edges
at similar angles. From https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception.

In more abstract regions of the brain, nearby neurons may come to represent similar concepts. Fig. 9.7
shows a SOM trained to model relationships between words. A network with 150 output nodes was trained
on semantic data. It was trained using “2000 presentations of word-context-pairs derived from 10,000 random
sentences... Nouns, verbs, and adverbs are segregated into different domains” (p. 1476)[78]. Notice that
nodes representing nouns, adjectives, and verbs occur in specific regions of the network, so that the network

https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Perception

CHAPTER 9. UNSUPERVISED LEARNING 117

represents grammatical categories. Also note that nearby nodes represent words with similar meanings, like
“dog” and “horse” or “fast” and “slowly”.16

Figure 9.7: A self organizing map trained to represent semantic features of sentences. Each dot corresponds
to an output node, and labels show what concepts these nodes have learned to represent. Notice that nouns,
adjectives, and verbs are represented in specific parts of the network. From Kohonen (1990), p. 1476.

16Sergio Ponce de Leon refers me to this visually stunning video: https://www.youtube.com/watch?v=k61nJkx5aDQ. The
point made is slightly different, and I can’t speak to the merits of the study, but it is a striking way to see the general idea in
action.

https://www.youtube.com/watch?v=k61nJkx5aDQ

Chapter 10

Dynamical Systems Theory
Jeff Yoshimi, Scott Hotton

In chapters 5, 6, and 12, we have noted that when the “play” button is pressed in Simbrain a dynamical
process is simulated; neurons start firing and changing, weights will sometimes change their size, etc. A
dynamical system is a rule that says how a system changes its state in time. Neural networks are dynamical
systems, which say how patterns of node activations, weight strengths, and other quantities change in time.
When you press play in Simbrain, you run a dynamical system. Simbrain has special features, like the
projection plot, which support dynamical systems analysis by allowing you to visualize network dynamics
as they unfold in real-time.

Dynamical systems theory provides a formal, mathematical way to both analyze and visualize processes
in neural networks (especially recurrent networks). Think of it this way: it’s one thing to run a neural
network in Simbrain and see a bunch of colors changing, or to look at a set of equations describing a neural
network. But in these cases it’s hard to say much about what exactly is happening in the network. However,
when we use dynamical systems theory to describe and visualize that same neural network, suddenly we can
see things that were previously invisible. We might find that no matter what state we initialize a network
to, when we run it, it always ends up settling into just one of two possible states. Or we might find that it
oscillates in one of three possible oscillatory patterns. These are things we can clearly see in a dynamical
systems analysis, that would otherwise be hidden from us. As examples of this kind of visualization see Figs.
10.1, 10.2, 10.3, 10.4, and 10.6 below.

Dynamical systems theory is useful across all the domains of neural network theory. In connectionist
models, memories can be thought of as stable states or attractors in a recurrent network (that is, states
which the system tends to go to over time), which can be visualized as points in an activation space. Pattern
completion—e.g. seeing part of a picture and then imagining the missing part—can be understood as an
initial state of a system settling in to an attractor (see chapter 11). Learning in general can be understood
as a dynamical process on the weight space of a network. More generally, connectionist theorists have
thought of cognition as unfolding in a high-dimensional activation space, and learning as unfolding in an
even higher-dimensional weight space. In computational neuroscience low level models of individual neurons
are dynamical systems models, which describe how levels of calcium, sodium, spike rate adaptation, and
other more abstract quantities change in time (see chapter 19). In machine learning, recurrent networks are
trained to reproduce dynamical sequences of data, and can generalize from existing data to new data: this
kind of network can be trained to generate paintings in the style of a particular painter, or speech in the
style of a particular speaker (see chapter 16). There is also a body of theoretical work showing that neural
networks can approximate any continuous dynamical system with arbitrary precision [69]. This shows that
the human brain has a great deal of flexibility in the kinds of behaviors and processes it could in principle
produce.

118

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 119

10.1 Dynamical Systems Theory

In this section, we introduce the basic concepts of dynamical systems theory and show how they can be used
to study neural networks.

Figure 10.1: Some basic components of a dynamical system. The square region is the state space for a
2-dimensional system. Each point in that region is a state. Each state can be treated as an initial condition.
When the system is run, an orbit unfolds from the initial condition. A picture like this that shows selected
orbits in the state space is a phase portrait. The phase portrait shows in a concise, visually intuitive way
what the dynamics of a system are. In this case we have a system with a single attracting fixed point. All
orbits lead to that same state. Recurrent neural networks often display attractor dynamics.

We begin with the concept of a state. The word “state” is a general term to describe the condition of
a system. For instance a bar of iron can be in a magnetic state or nonmagnetic state. The water in a jar
can be in a frozen state but after being heated the water can change to a liquid state. A molecule can be
in its ground state until it absorbs light, whereupon it enters an excited state. People can be in various
emotional states. Oftentimes, states vary in a continuous way: the temperature of a pot of water, the sound
level of a plucked guitar string, and the firing rate of a neuron all move up and down as internal and external
conditions change. Note that the same object can have lots of states, depending on what we are interested
in. A human has a temperature, a height, and a weight, and all of these are changing. Any of them can be
the focus of a dynamical systems analysis.

Mathematically, the state of a system is represented by values for a collection of state variables. Each
state variable describes a numerical value associated with a system at a time. If we have variables describing
the temperature and pressure of a pot of water, then the state of that system at a given time is the value
of those variables at that time. If we have three variables describing height, weight, and temperature of a
person, then a state of that person at a time is the value of those three variables at that time. If we have a
neural network with 1000 neurons, then we have 1000 state variables, one for each neuron in the network.
But again, it’s up to us what we consider a state of the network to be. We might just focus on a few of
those neurons. Or we might shift attention from nodes to the weights. We could consider the full matrix of
1, 000, 000 weights in that network, which correspond to a million state variables. Or we could consider the
combined set of activations and weight strengths, which would involve 1, 001, 000 state variables.

A state of a system is a specification of values for all of the state variables which describe that system. If
we model water using temperature (Farenheit) and volume (Liters) as our state variables, a state for the pot
of water might be (89.8, 2). If we model a person using height (inches), weight (pounds), and blood sugar
(mg/dl) as our state variables, a state for the person might be (60, 150, 75). A state for the nodes or the
weights of the network is a large vector or matrix that is too long to write out here. Dynamics then describe
how these states–e.g. activation vectors, weight matrices, or others collections of state variables–change in
time.

The state of the network in Fig. 10.2 is (−.8, .8), which are the values of two state variables a1 and a2,
corresponding to the activations of the two nodes. However, recall that what we take to be a “state” of a
system is up to us. So instead of looking at node activations, we could have looked at weight strengths.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 120

Then the state variables are w1,1, w1,2 and the current state is (−1,−1).

Figure 10.2: A 2 node recurrent network (left) and its phase portrait (right). The phase portrait has two
fixed point attractors at (−.8, .8) and (.8,−.8), each with its own basin of attraction. There is a fixed point
at the origin (0, 0) which is attracting in one direction but repelling in the other (a “saddle-node”). This is
a Hopfield network that was trained using a variant of the Hebb rule. The network stores two memories,
corresponding to the two attractors.

Having specified what a state of a system is we can consider its state space, which is the set of all
possible states of the system. The state space will, in the examples we consider, generally be a vector
space (see chapter 6). For a neural network’s activations, this means all possible activation vectors for that
network, all possible patterns of activity that could occur over all of its nodes. So here, the state space of a
network is its activation space. If we focus on a neural network’s weights, the state space of a network is
its weight space. A network with n-nodes has an n-dimensional activation space and a weight space that
can be up to n2-dimensional (there are n2 possible weights in a network of n nodes; to see this recall that
each weight can be represented as an entry in a matrix with n rows and n columns).

The dynamics of a network unfold in its state space. In a neural network, this is often a high dimensional
space, e.g. the 20-dimensional space of a network with 20 neurons. Recall from chapter 6 that we can use
dimensionality reduction techniques—like the projection plot in Simbrain—to visualize these dynamics in 2
or 3 dimensions.

An initial condition (or initial state) of a dynamical system is just the state the system begins in.
For the case of a neural network’s activation space, this is an initial specification of values for its nodes.
Theoretically any point in the state space can be taken as an initial condition although sometimes it may be
difficult or impossible to actually start a physical system in some particular state (e.g. setting the position
and velocity of the earth or setting a person’s age). In Figs. 10.1 and 10.2, any of the points shown could
be taken as initial conditions. Each point corresponds to one pattern of activation over the nodes of the
corresponding network. Often we just randomly choose initial conditions. In Simbrain, we do this for
activation states by selecting all the nodes of a network and then pressing the randomize button. If we
repeatedly press the randomize button, we end up putting the network in a whole bunch of different initial
conditions, which is a useful way to explore the different ways the network can behave.

We are now in a position to give a definition of a dynamical system:

Dynamical system: A rule that associates initial states of a system with (usually) future states
of the system.

(We say “usually” because the system can also associate initial states with themselves at the present time,
and can sometimes also associate initial states with past states; these are called “invertible” systems). A
dynamical system can be thought of as a recipe for saying, given any initial point in state space (any initial
condition), what states will follow in time for that system. If we know a system begins in state (1,−1), the
dynamical system will tell us exactly what states it will be in 4, 5, and 6 seconds (or iterations) from now.
And we can do this no matter what initial condition we place our system in. Thus, dynamical systems are

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 121

deterministic: in theory they allow us to completely predict the future of a system based on its present state.
A long-standing question in philosophy is whether the universe is deterministic, and thus describable by a
dynamical system.1

Depending on whether “time” is taken to be continuous or discrete, we have a continuous time or discrete
time dynamical system. In nature, time is thought to be continuous, and thus continuous time systems,
described with the tools of calculus (for example, differential equations) are often used to model natural
systems. In computer simulations, such as Simbrain, time is treated as something that occurs in discrete
steps or iterations, and so dynamical systems as studied in computer simulations are discrete time systems.

Figure 10.3: Penduluum (Left) and its state space with a phase portrait (Right). The vertical dimension of
the state space corresponds to angular speed; the horizontal dimension corresponds to angular displacement
away from hanging straight down.

The mathematical category of dynamical systems is abstract, and encompasses many more specific ideas
in mathematics. For example, the solutions to differential equations are often dynamical systems, which
allow us to predict future states of a system from its current state. An iterated function is another kind of
dynamical system (think of entering “2 × 2” on a calculator and repeatedly clicking the “=” button).

A pendulum is a classical example of a dynamical system. Pendulums have been studied extensively ever
since Leonardo da Vinci designed fairly accurate clocks based on them. The state of a pendulum is given
by two variables, one variable θ for the angular displacement of the pendulum from verticality and another
variable θ̇ for the angular speed.2 If we start a pendulum with some chosen values for these two variables
we can, at least in principle, say exactly how it will move forever in the future. Fig. 10.3 shows a pendulum
on the left and its state space on the right. The horizontal axis shows the angular displacement, θ, and the
vertical axis shows the rate of change of the angular velocity, θ̇. We can put the bob of the pendulum in any
initial position and give it a push with any initial speed and the future of the pendulum will be determined.
This behavior can be predicted by choosing the corresponding point in the phase portrait and following the
orbit though that point. Eventually, because of friction, the orbit will close in on the point (0, 0) which
corresponds to the pendulum hanging straight down without moving.3

Neural networks are also like this. If we start a neural network off in some particular state–for example,
if we specify values for all its nodes–then based on its update rules and the way it is wired together we can
say just how it will behave for all future time. Thus, “running” a neural network, in Simbrain by pressing

1This is sometimes described in terms of “Laplace’s Demon.” As Laplace himself said: “We ought to regard the present
state of the universe as the effect of its antecedent state and as the cause of the state that is to follow. An intelligence
knowing all the forces acting in nature at a given instant, as well as the momentary positions of all things in the universe,
would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the
world, provided that its intellect were sufficiently powerful to subject all data to analysis; to it nothing would be uncertain,
the future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to
astronomy affords but a feeble outline of such an intelligence. (Laplace 1820)”. From Carl Hoefer’s encyclopedia article:
https://plato.stanford.edu/entries/determinism-causal/.

2Note the dot over θ̇, which indicates the first derivative of θ, i.e. rate of change of angular displacement, which is angular
speed.

3The state space is actually an infinitely long cylinder. Imagine wrapping the left and right edges of the state space in Fig.
10.3 around and gluing them together.

https://plato.stanford.edu/entries/determinism-causal/

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 122

the step or the play button, corresponds to applying the dynamical rule that describes it. A neural network
which is predictable in this way is a dynamical system.

Can you think of ways to make a neural network not be a dynamical system? One way is to add some
random noise to a node. When you do that, it is no longer possible to predict with complete accuracy what
future states will follow from the present state.

Since dynamical systems are deterministic, they can be used to predict exactly what future states will
follow from any initial condition. However, a chaotic dynamical system is a dynamical system whose
future behaviors are difficult to predict. A chaotic system is still a dynamical system, so it’s fully deter-
ministic, but it’s hard to predict how it will behave, especially moving farther in to the future. It’s a kind
of paradox: a chaotic system is fully determined by a set of equations, but it behaves in an unpredictable
way.4 To see chaos in Simbrain you can create a logistic activity generator. By default this rule produces
chaotic dynamics (open its help page for more information). Many natural processes, like the weather, are
thought to be chaotic. An example of chaotic behavior is shown in Fig. 10.4. Notice that given an initial
condition it would be hard to predict where precisely that system would be at future times, even if we do
know it would stay in that region of state space.

Figure 10.4: An orbit from a famous chaotic system called “The Lorenz Attractor.” Nearby initial conditions
can diverge arbitrarily far apart (within the attractor) over time.

An orbit of a dynamical system is the set of states that are visited by the system relative to a particular
initial condition (orbits are also called “trajectories”). The idea is that you begin in some initial condition
(you start at some point in the state space), then run the dynamical system, and the result is a time-ordered
collection of states, one for each iteration or moment in time. This time oriented subset of states is an orbit.
Orbits are drawn with arrows to show the direction in which the system moves with time. In Fig. 10.1 and
Fig. 10.2 most of the orbits are curves that tend towards specific points. Similarly for the pendulum’s state
space. In the chaotic system in Fig. 10.4, the orbits are tangled and hard to follow. In some cases an orbit
is a single state: start in that state, and you will stay there forever (keep this in mind! It sounds weird
to call one point an “orbit”, but sometimes a point is an orbit!). In terms of neural networks, we put the
neural network in some initial state, we run the network, and we watch its activations or weight strengths
(or other parameters) change. The resulting set of points is an orbit for the neural network. Orbits can be
viewed using the projection plot.

We can visualize a dynamical system by drawing several of its orbits in state space. This gives us a sense
of what a system tends to do relative to different initial conditions. This is a phase portrait, a picture of
a state space with some important orbits drawn in it. Since every point in the state space is part of some
orbit, if we drew all of the orbits they would fill the whole state space. So we only draw some of the more
important ones, a selection of the orbits that are the most revealing. Most of the figures in this chapter
show phase portraits. Of course, since most neural networks have more than 3 nodes, we will typically have

4The formal definition of chaos is a difficult and unresolved topic. One way to define chaos is in terms of “sensitive dependence
on initial conditions.” In this view, a chaotic system is such that initial conditions that are extremely close to each other in the
state space, can end up being very far apart given enough time. This is sometimes called the butterfly effect. Since weather is
a chaotic phenomenon a small change in one part of the world, like the flapping of a butterfly’s wings, can have a huge effect
further in time. So for example, if you sneeze now (vs. not sneezing) it could influence food prices in Brazil a few months later.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 123

to visualize a phase portrait using dimensionality reduction techniques, using the projection plots in
Simbrain.

10.2 Parameters and State Variables

Above we noted that it is somewhat arbitrary what we take the state variables of a system to be. In a
neural network, it can be the nodes, or the weights, or both, or something else! There is a related subtlety.
Sometimes we treat some of the state variables associated with a system as being fixed and unchanging.
For example, in a neural network we often freeze or “clamp” the weights of the network to study how the
activations change. This is biologically unrealistic, since in the brain synapses are changing all the time.
But we can justify this approach by noting that synaptic efficacies change much more slowly than neural
activations do, and so as a simplification we can treat these efficacies as fixed. A variable like this is a
parameter, that is, a variable that is treated as fixed, while other state variables are allowed to vary. In a
neural network, weights and biases are often treated as parameters. The concept of a parameter also occurs
in machine learning contexts, where the parameters of a model are adjusted during training, but then usually
fixed when the model is being used.

The parameters of a dynamical system are part of what determines its phase portrait. Once we see this,
we can start to vary the parameters of a system, and observe corresponding changes in its phase portrait.
When we do this, we will see the phase portrait change. Think of each parameter as a knob, and a set of
parameters as a set of knobs. When the knobs are changed, the dynamical system changes, and this is visible
as a change in its phase portrait. Usually the result of changing a parameter is a mild change in the phase
portrait. But sometimes changing a parameter can lead to a drastic change. A new stable state can emerge
in the state space, or a set of nodes that were stuck in one state can start oscillating.5

These sudden shifts in the behavior of a system when parameters are changed are called bifurcations. A
bifurcation is a radical (more precisely, “topological”) change in the phase portrait of a dynamical system
that occurs when the parameters are changed passed certain critical values (these values are sometimes called
“critical points”). An example of a bifurcation is shown in Fig. 10.5. In that figure, a single point (left)
gives rise to a circle (right) when the parameters are changed past a critical value.

Figure 10.5: A bifurcation where a fixed point goes from being attracting to repelling, and in which an
attracting periodic orbit appears. (This is called a “Hopf bifurcation”).

10.3 Classification of orbits

A phase portrait is a complicated collection of orbits. How can we understand it? One way is to focus on a
few prominent orbits in the phase portrait, and to extrapolate from these to get a sense of how the rest of
the system behaves. Oftentimes a system has a few prominent orbits–e.g. certain kinds of stable states that

5This is similar to what happens in the graceful degradation lab: removing weights (which is like turning a weight knob to
0) usually doesn’t make a big difference, but can sometimes lead to a massive change where the agent can no longer recognize
something.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 124

“pull in” nearby states–and the rest of the system can be understood relative to those prominent orbits.6

For example, in Fig. 10.1 only 10 orbits are shown (one of which is a single point), but from these 10 orbits
we can infer what the other orbits are like. The other orbits are “between” these 10. In fact, in this case
we can get a pretty good sense of what the system will do just by focusing on the point in the center, and
noting that it attracts all other states towards it.

In this section, we introduce some language for classifying orbits and using them to understand the overall
behavior of a system. The basic categories we consider are shown in Fig. 10.6.

Figure 10.6: An attracting fixed point (upper left), repelling fixed point (upper right), attracting periodic
orbit (lower left), and repelling periodic orbit (lower right). Attractors / repellers are shown in black;
transient of orbits approaching or leaving attractors and repellers are shown in blue.

10.3.1 The Shapes of Orbits

One way to classify orbits is by their shape, or “topology.”7 Some prominent topologies for an orbit are a
point, line and a loop. The analogues of these in a discrete time system are a point, a sequence of points,
and a cycle of points.

The simplest shape for an orbit is a fixed point (also known as an equilibrium), a state that goes to
itself under a dynamical system. See the top row of Fig. 10.6. This type of orbit is just a single point. When
we start a dynamical system at a fixed point it remains there for all time. Once a system reaches a fixed
point it stays in that state forever.

6In a more formal presentation, we would focus on invariant sets rather than orbits, which are subsets of a state space with
the property that no orbit that enters it will ever leave. Such a set is “invariant” in that if a system begins somewhere in an
invariant set, it will stay there for all time (Unless some external force pushes it out of the set, but then we no longer have a
classical dynamical system.) Notice that a single orbit by itself is an invariant set. Other types of invariant sets contain many
orbits.

7The topology of an orbit is its shape, in a special sense. Think of an orbit as a compressible / extendible string. This
concept of shape allows arbitrary squashing and pulling of the orbits. Two orbits have the same topology if one can be squashed
or squeezed in to the other shape without cutting the strings or gluing them together. In a discrete time system the topological
properties of orbits work differently. Orbits are discrete chains and their topology is defined similarly to how the network
diagrams in chapter 1 were defined.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 125

Another shape for an orbit is a repeating loop or cycle. See the bottom row of Fig. 10.6.8 This kind of
orbit visits the same points over and over again. This is a periodic orbit, a set of points that a dynamical
system visits repeatedly. This corresponds to an oscillation in a network, a repeating pattern of firings. For
a continuous time dynamical system, a periodic orbit is loop-shaped (it has the topology of a circle), and its
period is the amount of time it takes to go around the loop.9 For a discrete time system, a periodic orbit is
a finite set of n states that the system cycles through (its period is n). This is also called an n-cycle. For
example, a 2-cycle is a pair of states the system goes back and forth between. A 3-cycle is a set of 3 points
that system visits in the same repeating sequence. Similarly for 4,5,100, and arbitrarily large n-cycles.

Figure 10.7: Two 5-cycles in a two dimensional state space. The points in the 5-cycles are indicated with
open circles. The arrows on the dashed lines connecting the open circles indicate where each point in a
5-cycle goes under the dynamical system. (Left) A 5-cycle for a simple dynamical system that just rotates
the points by 1/5 of a turn. (Right) A 5-cycle for a more complicated dynamical system.

Figure 10.8: The 5-cycles are shown as in the left panel of Fig. 10.7. The filled dots indicate points that
are not part of the 5-cycle. The arrows on the dashed lines connecting the dots indicate where the points
go under the dynamical system. (Left) An attracting 5-cycle. Over time the points get closer to the 5-cycle
and can eventually merge into it. (Right) A repelling 5-cycle. Over time points near the 5 cycle go way from
the it.

Joining orbits together produces an invariant set. States in an invariant set never leave it. For instance
the disks inside the periodic orbits shown in the bottom row of Fig. 10.6 are invariant sets. They are the
union of spiral shaped orbits (not all of which are shown) and a fixed point. Invariant sets can have many
other shapes and extend into higher dimensional spaces. For example a two dimensional torus in a three
dimensional state space can be an invariant set. Invariant sets can even be fractals like the one shown in
Fig. 10.4.

8The Poincaré-Bendixson theorem tells us there must be at least one fixed point inside the periodic orbits shown on the
bottom row of the figure. These fixed points have been omitted for pedagogical purposes.

9Do not confuse the period of a single periodic orbit with the number of periodic orbits in the state space. For example, a
dynamical system can have one periodic orbit with period 2 and three other periodic orbits with period 5.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 126

10.3.2 Attractors and Repellers

Another way we can classify orbits is according to how states near them behave. Sometimes states near an
orbit will tend to go toward the orbit. It’s as though the orbit “pulls in” all nearby points. See the left
side of Fig. 10.6. The fixed point and periodic orbit seem to draw other orbits to towards them. These
are attractors. More formally, an attractor is an orbit such that all states sufficiently close to it will stay
close to it. If you perturb a system slightly from an attracting state it will tend to go back to that state.
Attracting fixed points are also called stable states or stable equilibria. These are states we are generally
more likely to observe a system in. A chair or coin at rest, or a marble at the bottom of a bowl, are at
attracting stable states. Move them a little and they will settle right back down. Another way to think of
attractors is that they are the long-range stable behaviors we will tend to observe a system in. When you
iterate a recurrent network it might be a bit unpredictable for a time but then settle into a single state or
a repeating cycle of states. Randomize its nodes and it will stutter a bit again but then maybe settle into
another stable behavior. These are its attractors.

In other cases states near an orbit will tend to go away from the orbit. It’s as though the orbit “pushes
away” all nearby points. See the right side of Fig. 10.6. Once a dynamical system starts running we are
unlikely to see it near one of these orbits. More formally, a repeller is an orbit such that all states sufficiently
close to it move away from it.10 Perturb a system from a repelling state and it will begin to move away from
that state. These are also known as “unstable” states. A chair or coin resting right on its edge, or a marble
balanced precisely at the top of an upside-down bowl, is in a repelling state: move these systems a tiny bit
away from their current state and they will go away from that state. Because of this, it is hard to observe
systems in repelling states.

When a system has multiple attractors, we can associate each attractor with a basin of attraction,
which is the set of all states that tend towards a given attractor. This is useful because we can then partition a
state space in to basins, one for each attractor. If you start a system off anywhere in the basin of attraction
for an attractor eventually it must end up on or very close to that attractor. We can think of basins of
attraction using a “hill-and-valley” metaphor (see figure 10.9). We can think of the state space of a neural
network like a wavy surface and we can imagine there is a marble rolling on the surface whose position marks
the current state of the system. The marble rolls down along a path (orbit) in the valley that it starts out
in. The attractor in this metaphor is the point at the very bottom of the valley that the marble comes to
rest at and the whole valley is its basin of attraction. The state space in Fig. 10.2 has two attractors with
two basins of attraction.

Figure 10.9: Attractors and basins of attraction pictured using a hill and valley metaphor.

As we discuss further in chapter 11, attractors of recurrent networks can be thought of as memories in
some connectionist models. If a network of this kind has 20 attractors, we can think of it as having 20
memories. Recalling a memory corresponds to setting the system in an initial state and letting it settle in to
the attractor of whatever basin of attraction it began in. Learning new memories corresponds to modifying
the weights of the network to acquire new attractors. A related example is perceptual completion. Perceptual

10Technically these are definitions for “attracting sets” and “repelling sets”. In order for an attracting set to be an attractor
or a repelling set to be a repeller the set must satisfy a further property known as “topological transitivity” which is a concept
we will not go into here. Fixed points and periodic orbits do have this property so this definition suffices for them.

CHAPTER 10. DYNAMICAL SYSTEMS THEORY 127

completion is when you see part of a picture and “fill in” the rest in your imagination. We can think of the
state of seeing only part of the picture as being an initial condition in a neural network. And we can think
of the process of “filling in” the rest of the picture as the network’s dynamical processing that leads to the
attractor which corresponds to the memory of the whole image.

There are orbits that are neither repellers nor attractors. For example, the central point in Fig. 10.2 is
attracting in one direction, and repelling in another.

10.3.3 Combining these classifications

Combining the results of the last two subsections, we can classify the orbits of a dynamical system in terms of
the topology of its orbits together with whether they are attracting or repelling. This classification is evident
in Fig. 10.6. Here is the same classification in table form. In the table below, the columns correspond to
different topologies or shapes that an orbit can have. The rows corresponds to the behavior of states nearby
the orbit.

Fixed Point Periodic orbit
Attractor attracting fixed point attracting periodic orbit (e.g. an attracting n-cycle)
Repeller repelling fixed point repelling periodic orbit (e.g. a repelling n-cycle)

Recurrent networks displaying all four types of orbit can be created in Simbrain using the projection
plot. However, as noted above, it’s easier to find attractors than repellers. Fig. 10.10 shows a system with
two attracting fixed points on the left, and a system with an attracting periodic orbit on the right. Both
are projections of orbits of a 25 dimensional system to 2 dimensions. In both cases the image was generated
by repeatedly randomizing network nodes (setting them in an initial condition), running the network, and
observing the resulting orbits. About 17 initial conditions were used for the network on the left, and 5 on
the right. It is possible that the systems contain more attractors than are shown, but that they were not
found after that many attempts. Notice that attractors were found, but not repellers. To find a repeller you
have to get lucky and land right on top of it, or find it using mathematical means. This emphasizes the mix
of exploratory and more a priori or analytic modes of research involved in dynamical systems theory.11

Figure 10.10: Phase portraits generated using Simbrain. A system with two attracting fixed points (Left) and
a system with one attracting periodic orbit (Right). Both are projections from a 25 dimensional activation
space to 2 dimensions. The red point is the current point in each simulation.

11Notice that the orbits are not smooth. This emphasizes that a computer produces a discrete approximation of continuous
time processes.

Chapter 11

Unsupervised Learning in Recurrent
Networks
Jeff Yoshimi

11.1 Introduction

In this chapter, we consider recurrent networks trained using the Hebb rule to complete patterns. This
complements the discussion of unsupervised learning in feed-forward networks in chapter 9 with an analysis
of unsupervised learning in recurrent networks. We will see that the tools of dynamical systems theory
(chapter 10) are quite useful in this context. In chapter 16 we discuss more complex recurrent networks and
their applications to psychology, neuroscience, and engineering.

11.2 Hebbian Pattern Association for Recurrent Networks

We now consider a recurrent network trained using the Hebb rule. When the Hebb rule is used in a
recurrent network, connections between active nodes will be strengthened, and the result is a kind of trace
of the pattern. If the weights are then clamped to prevent further learning (recall how sensitive Hebbian
learning is), a fragment of the pattern, a “cue”, can then be used to recreate the entire pattern. An example
that makes the idea clear is in Fig. 11.1, where the residue of past training on an “L”-shaped pattern (a
“memory trace”) is evident. When the network is updated, it is obvious that the activation will fill in the
L-shape.

Because they associate parts of a pattern with a whole pattern, these networks are sometimes thought
of as auto-associators, or “self”-associators.

Just as it is fairly easy to train feed-forward pattern associators using the Hebb rule (see chapter 9), it
is fairly easy to train recurrent pattern associators in this way. For practice, try using the self-contained
Simbrain tutorials autoAssociatorPart1.zip and autoAssociatorPart2.zip, created by Alex Holcombe.1

These ideas can be used to understand conceptually how visual image completion might work. When
we see a fragment of a familiar image or visual scene, we often “fill in the rest”. This can be understood in
terms of trained associations in a recurrent network where each node corresponds to a pixel. When a pattern
is learned, all the correlations between pixels are encoded by strengthening corresponding connections using
the Hebb rule. An example of a recurrent auto-associator for visual memories is shown in Fig. 11.2. It’s the
same idea as with the simple “L” pattern in Fig. 11.1, but with a much larger network, containing half a
million rather a few hundred weights. In each case, learning a memory amounts to strengthening co-active
nodes in a grid of nodes. In both cases, a partial cue triggers the completion of a stored pattern. The
formation and recall of visual memories can be understood in these terms.

1In Simbrain press open workspaces and navigate to the courseMaterials folder.

128

CHAPTER 11. UNSUPERVISED LEARNING IN RECURRENT NETWORKS 129

Figure 11.1: Cued recall of an “L” shaped pattern. Notice that the “L” pattern is visible in the red weights,
which indicate how the pattern will be completed. In the past, those neurons fired together, so they were
wired together by the Hebb rule.

Figure 11.2: Pattern completion in a recurrent network with 130 · 180 = 23, 400 nodes. The left-most image
in each row shows the initial cue. The middle image shows the network part-way through the pattern
completion process. The right image shows the final image. From Hertz et al. 1991. The network is a
Hopfield network, which uses a variant on the Hebb rule.

Figure 11.3 shows how pattern completion in recurrent auto-associators can be understood in terms of
dynamical systems theory (also see chapter 10). Each new pattern the network is trained on becomes a fixed
point attractor in its activation space. The beer and dog images on the right of Fig. 11.2 are fixed point
attractors in the 23,400-dimensional activation space of that network. The “L” visible as a trace in Fig. 11.1
is a fixed point attractor of the 16-dimensional activation space of that network. A cue corresponds to an
initial condition. The single beer bottle and dog’s ear in Fig. 11.2 are initial conditions, as is the upper part
of the “L” in Fig. 11.1. Recall corresponds to following an orbit through the activation space. The final
memory is the attractor corresponding to whatever basin of attraction the initial condition was in. Thus, on
this model, learning a new pattern via Hebb’s rule corresponds to adding a new attractor to the network’s
state space.2

11.3 Some features of recurrent auto-associators

First, they perform fairly well even if some synapses are removed (graceful degradation) or if you add
noise to the inputs.

2Thus, learning in these cases also counts as a bifurcation, since this corresponds to a change of parameters (weights) that
produces a change in the topological structure of the orbits in the state space.

CHAPTER 11. UNSUPERVISED LEARNING IN RECURRENT NETWORKS 130

Figure 11.3: Schematic diagram of the attractors and basins of attraction for the images shown in Fig. 11.2.
Fragments of images correspond to initial conditions, that evolve under the network dynamics to completed
images, which correspond to attracting fixed points.

Second, the memories you train the recurrent network on can interfere with one another. Small networks
trained using binary vector inputs (patterns of 0’s and 1’s, as in see Figure 11.4) cannot easily learn
more than one memory. If a second pattern overlaps the first (in which case the two input vectors are not
orthogonal), then during recall any partial version of either pattern will produce the conjunction of the
two patterns. This is sometimes called cross talk. To address the problem, we can use bipolar vector
patterns (see Figures 11.4 and 11.5 to see how binary and bipolar patterns compare), in which the “off”
neurons are set to -1. The reason this helps is that the network is now learning not only to recreate a
pattern of correlated activations, but also to inhibit activations inconsistent with the current pattern. The
“on” nodes are connected to the “off” nodes with negative weights. Thus, during recall, activating one
pattern will inhibit other patterns. This in turn makes it possible to store overlapping patterns. One pattern
simultaneously represses the other.

Figure 11.4: An auto associative network trained on a single binary pattern using Hebb’s rule. Notice that
only weights between co-active nodes have been strengthened. Since the other nodes have activations of 0,
weights to and from them are not changed.

Third, when you train a recurrent network, you will sometimes notice new patterns, which are byproducts
of other patterns: this is sometimes called a spurious memory. A common form of spurious memory in
a recurrent network is the antipattern of a pattern, which is formed by changing every activation to its
opposite value: swapping 0’s and 1’s in a binary pattern, or -1’s and 1’s in a bipolar pattern. For example

CHAPTER 11. UNSUPERVISED LEARNING IN RECURRENT NETWORKS 131

Figure 11.5: Bipolar version of pattern from Fig. 11.4, after training on a bipolar version of the same pattern.
Notice how some of the weights have turned blue. Thus, when the pattern is recreated incompatible patterns
will be inhibited. This version of the network can learn several patterns.

the antipattern of (1,−1, 1) is (−1, 1,−1).3

Finally, these networks tend to oscillate. If you try multiple initial conditions in a recurrent network
trained using the Hebb rule, it may sometimes oscillate through an n-cycle rather than settling in to a fixed
point attractor. In our study of dynamical systems in chapter 10 we saw that oscillations—i.e. attracting
periodic orbits—often appear in recurrent networks. Using the Hebb rule can store a fixed point attractor
memory, but un-desired n-cycles can come along for the ride. Hopfield networks, discussed next, avoid this
problem.

11.4 Hopfield Networks

A special type of recurrent, auto associative, Hebbian network is a Hopfield network.4 Hopfield networks have
no self-connections and their weights are always symmetrical (wi,j = wj,i for every weight in the network).
The symmetric weight matrices and the special way they are updated gets rid of unwanted oscillations.

A Hopfield network with 80 nodes is shown in Fig. 11.6 after it has retrieved one of the 4 memories it was
trained on, a memory corresponding to the letter “Z”. The theoretical memory capacity of Hopfield networks
has been estimated to be 15% of its number of nodes.5 Thus, a network with 20 nodes should be able to store
about 3 = .15 · 20 memories. Hopfield networks have the advantage of not producing oscillations. However,
they do produce spurious memories. To get a feel for how Hopfield networks work, you are encouraged to
try the Simbrain simulation hopfieldNet.zip or to make and train a Hopfield network from scratch.

3One way to get a feel for this is to use a projection to see all the stored and spurious patterns, which are attractors of the
network. Often these will appear to be symmetrically positioned vertices of a hypercube.

4Hopfield networks are important historically. When John Hopfield, a physicist, introduced them in the 1970s it brought the
existing engineering literature on neural networks and the formalisms in physics into greater contact with one another. Hopfield
also pioneered the use of dynamical systems theory in neural networks [68]. For this work he was awarded the Nobel prize in
2024. There were precursors to Hopfield’s work, in particular Amari [5].

5A discussion of storage capacity for associative memories is in Fausett [42], p. 140 and section 3.3.4. Also see Hopfield’s
original discussion at [68], p. 2556.

CHAPTER 11. UNSUPERVISED LEARNING IN RECURRENT NETWORKS 132

Figure 11.6: Hopfield network trained on the pattern for a “Z”. Though a binary pattern is displayed behind
the scenes this network uses bipolar patterns, with -1’s where 0s are.

Chapter 12

Supervised Learning
Jeff Yoshimi

With supervised learning, parameters (weights and biases) are updated using an explicit representation of
how we want the network to behave. Input vectors in an input dataset are associated with targets or labels
in target dataset (see section 7.4).1 We say, “if you see this pattern, produce this other pattern.” This is
sometimes called “learning with a teacher.” We saw in chapter 9 that Hebbian pattern associators can be
trained by exposure to input / output pairs. Unfortunately, that method is unstable. The weights tend to
explode to extreme values. So we need something more adaptive and robust: a way to get the weights to
go up and down and settle in on just the right values, so that our network gets as close as possible to doing
what we want. It’s a bit like Goldilocks, trying to find the breakfast whose temperature is not too hot, not
too cold, but just right.2 Supervised learning algorithms provide a way to achieve this kind of zeroing in on
just the right solution to a problem.

In this chapter we focus on general features of supervised learning in feed-forward networks, developing
a toolkit of techniques and visualization methods. We will need to think clearly about labelled datasets,
distinguish classification from regression tasks, learn how to visualize these two kinds of task, and discuss
how to compute a metric of how well our network is doing at a given time (“error”). Finally, we will need
to think about error reduction in a visual way, as downward motion on an error surface using the method
of “gradient descent”, which is basically the dynamical systems idea from chapter 10 of finding attracting
fixed points, but this time in weight space rather than activation space.

In chapter 13, we cover some of the main classes of algorithm in supervised learning for feed-forward
networks (including deep networks), and discuss their implications for cognitive science. In chapter 16, we
discuss how supervised learning methods can be used to train recurrent networks, and how these trained
recurrent networks have illustrated ideas in cognitive science. In both cases, we will see that internal
representations are often learned by these networks, which seem to be similar to those humans use in
processing language, recognizing faces, and in other tasks.

12.1 Labeled datasets

With supervised learning, we tell the network what we want it to do. There is a teacher or trainer. Recall
from chapter 7 that a labeled dataset for a supervised learning task consists of a pair of datasets: an input
dataset and a target dataset. Both datasets contain the same number of rows.

We will say that a labeled dataset is compatible with a feed-forward neural network if (1) the number of
columns in the input dataset is the same as the number of input nodes in the network, and (2) the number
of columns in the target dataset is the same as the number of output nodes in the network. The network
can have any number of hidden layers and still be compatible with the dataset. A labeled dataset can be

1More review from chapter 7: recall that the input and target dataset together are a labeled dataset and that the part of
the data we use to train a network is the training subset of the data. Also recall that the term ‘label’ is sometimes reserved
just for classification tasks but is also (as here) sometimes used to refer to target data for regression tasks as well.

2This is sometimes called the ‘Goldilocks principle’. See https://en.wikipedia.org/wiki/Goldilocks_principle.

133

https://en.wikipedia.org/wiki/Goldilocks_principle

CHAPTER 12. SUPERVISED LEARNING 134

used to train any network compatible with it. Examples of labeled datasets and compatible networks are
shown in figure 12.1.

A labeled dataset can be thought of as a contract for a pattern association task: we’d like to train a
network to come as close possible to implementing the input-output associations described by our labeled
dataset. In the language of vector-valued functions, we are training a network to approximate a function
that associates each vector in the input dataset with the corresponding target vector in the labeled dataset.

Figure 12.1: Some labeled datasets and the types of neural network topologies those training sets could be
used on. Each dataset contains an input dataset and a target dataset with 4 rows. In each case, the input
dataset has as many columns as its paired network has input nodes and the target dataset has as many
columns as its paired network has output nodes. A classification task is shown in the middle (binary valued
targets) and regression tasks are shown on the left and right (real-valued targets).

12.2 Supervised Learning: A First Intuitive Pass

In this chapter we focus on feed-forward networks, which can be thought of implementing vector valued
functions (such networks are often referred to as “MLP’s” or “Multi-Layer Perceptrons”, in reference to
earlier work by Widrow and others; see chapter 3). A labeled dataset is essentially a specification for a
vector-valued function we’d like our compatible network to implement. Given an input vector xr in a labeled
dataset, we want the network to produce an output vector yr as close as possible to the the corresponding
target vector in that dataset.

The way we do this with supervised learning is by using algorithms that modify the parameters p1, . . . , pn
of the network (the parameters are usually taken to be the weight strengths and the biases on all nodes except
the input nodes). We start out with a network all of whose parameters pi have been initialized to random
values.3 It’s like making a network in Simbrain and pressing the w then r buttons, which selects all the weights
and randomizes them. Recall from Chap. 10 that parameters are variables associated with a dynamical
system that are fixed when the system is run but can be changed between runs. In a recurrent network,
parameters determine the network’s dynamics. In a feed-forward network, they determine the vector-valued
function it approximates. Our goal is to set the parameters of the network so that it implements a vector-
valued function that reproduces the associations in the labeled dataset as closely as possible.

Because we start with random values for the parameters of the network, it will generally not do well at
first. Its outputs won’t initially match target values. We then use a learning algorithm (several are covered
in chapter 13) to incrementally update the parameters. If all goes well, the network should begin to behave
in accordance with the specifications of the labeled dataset.

Below we refer to “errors” and “overall error”, which are discussed in greater detail in Sect. 12.6. Roughly
speaking individual errors says how far away the outputs produced by a network relative to an input are
from the target values for that input, and overall error combines these errors together into a single number
for all the nodes and all the rows of the dataset.

To train a network, we select a subset of a compatible labeled dataset, a training subset (section 7.5).
This is our “training data”: a set of input vectors and target vectors in a subset of a labeled dataset that
we use to train our model. A schematic of the process that applies to most forms of supervised learning is
as follows:

1. Randomize network’s parameters p1, . . . , pn.

3When I refer to“randomizing” a set of values, we mean setting them to values generated by a probability distribution, e.g.
a uniform or a Gaussian distribution.

CHAPTER 12. SUPERVISED LEARNING 135

2. For each row xr of the input dataset:

(a) Set the input-layer activations of the network to xr.

(b) Compute the network’s output vector yr.

(c) Compute output errors by comparing the targets tr with the outputs yr (for each output, subtract
the output from the target).

(d) Update p1, . . . , pn with the goal of reducing errors (so that outputs are closer to targets).

3. Repeat step 2 until overall error is sufficiently low.

We will see that this can be visualized in geometric way, as “gradient descent” to a low point on an “error
hypersurface.”

12.3 Classification and Regression

For feed-forward networks trained using supervised learning, an important distinction can be made between
classification and regression tasks. At a first pass, classification tasks associate inputs with categories, and
regression tasks associate inputs with numbers.4

In a classification task, the network sorts inputs into categories. The inputs might be the height and
weight of a person, and the output will be a prediction about whether that person is a child or adult. Or, the
network could take car data as input, and predict whether the car is a sports car or economy car. Notice that
in both cases the outputs are categorical: they say which of n categories something falls in. This is one-of-k
or one-hot encoding, discussed in chapter 7. One node for each category, and the one that’s on corresponds
to the category being classified. The three object detector (figure 1.7) is a classifier, which classifies smell
inputs into one of three categories: Fish, Gouda, and Swiss. Figure 12.2 shows an example of a feed-forward
network that classifies pixel patterns as one of 26 letters.

Figure 12.2: An example of classification. A feed-forward network trained via supervised learning to classify
letter inputs as specific letters.

In a regression task, a network trained has real valued target values. This is simply the more general
case of estimating a vector-valued function, where there are no constraints on how we interpret the outputs.

4These concepts (especially classification) can also be applied to unsupervised learning. Recall from chapter 9 the discussion
of competitive networks and self organizing maps, which learn to classify inputs into distinct categories without a teacher. The
distinction also applies to recurrent networks, which can learn to classify dynamic inputs, for example, or to produce dynamic
real valued outputs.

CHAPTER 12. SUPERVISED LEARNING 136

If we train a network to predict the speed of a car (quarter-mile time) based on its fuel efficiency, engine
size, and how many cylinders it has, we have a regression problem. We are not classifying cars into types,
but predicting a numerical quantity about cars: their speed in a drag race.

Figure 12.3: An example of regression. (Left) The data used to train the network. Hours of study vs. score
on the SAT. (Middle) A plot of the data with a regression line. These are points in an input-target space, as
discussed in chapter 12. This line can be used to predict how well someone will do based on how much they
study. (Right) A simple 2-node network that could implement this regression solution. Enter hours studied
in the input node, and it should display a predicted SAT score in the output node.

The term “regression” comes from the statistical technique of linear regression. In fact, neural networks
provide a nice way to understand what linear regression is. To understand this, consider a classic example
of linear regression: predicting how well someone will do on a test based on how many hours they study.
As can be seen in figure 12.3, the more you study, the higher your score is likely to be. We can fit a line to
this data using standard statistical techniques. But a neural network–like the one shown in the right panel
of the figure–can also do it.5 That network can be trained to predict SAT scores based on hours studied.
Look how simple it is! That’s all linear regression really does: it gives us a network that we can use to
make predictions, in this case, simple predictions where a single input produces a single output. In fact,
the details are also pretty straightforward. In this case, the slope of the line corresponds to the weight, and
the intercept is the bias on the linear output node. Recall y = mx + b from high school math class; here
y is the output activation, x is the input activation, m is the weight, and b is the output node bias. Thus,
in computing weighted inputs for the output node, when there is just one input, we are just computing a
simple linear function.

Of course we can get more complex. We can have multiple inputs. We can predict how tall a tree will
be based on its age, average rainfall where it is planted, and concentrations of chemicals in its soil. In that
case we have multiple inputs predicting one output. In statistics this is called multiple regression, but you
can see that it’s just a matter of having a many-to-one network where we estimate the values of the weights
and biases. When we have multiple outputs we just repeatedly use this technique on each output node.
One output node predicts the height of the tree, another predicts how long it will live, etc. That is called
multi-variate multiple regression. Thus networks with many inputs and many outputs can be understood as
performing regression tasks.

As a simple procedure for deciding whether a task is a classification or regression task, look at the target
data. If the target data represent categories, e.g. a one-hot encoding, it is probably a classification task. If
they are real-valued or otherwise numerical data, then it is probably a regression task. Even more simply:
classification tasks typically involve binary or discrete valued targets, while regression tasks typically involve
real-valued targets.

5Note that in this example, the data have not been rescaled (chapter 7). Rescaling is often important, but not always
necessary.

CHAPTER 12. SUPERVISED LEARNING 137

12.4 Visualizing Classification as Partitioning an Input Region
into Decision Regions

It is important in supervised learning to be able to conceptualize problems in terms of a set of graphical
ideas. They are familiar ideas, and not too hard, but they confusingly overlap, so we must be careful and
systematic about understanding them. You will see many diagrams that look quite similar. We will only be
able to visualize what’s going on directly for very small networks, but we can use these ideas to generalize
to higher dimensions, which will give us a conceptual template for understanding more complex cases. This
theme of visualizing ideas directly in small networks and then extending them to higher dimensions is often
useful, as we will see.

The goal of a classification task is to create a model that correctly classifies inputs into a finite set of
categories. Target values are binary; an input is either in a given category or not. Classification involves
creating decision boundaries between inputs for the different categories. In this section we focus on decision
regions produced by networks with a single weight layer and a single output node with a threshold activation
function, but the ideas generalize in interesting ways to more complex networks (see Bishop [15], chapter 3).

Figure 12.4: A classification task for a 1-1 network (Left) and a 2-1 network (Right). Both networks use
threshold activation functions on the output nodes. Points in the input space are shown in blue. The decision
boundaries between points classified as 0 or 1 are shown in gray. On the left, the decision boundary is a
point shown as a small vertical hatchmark. On the right, the decision boundary is a diagonal line. The
decision boundaries partition the input spaces into two decision regions, corresponding to outputs of 0 or 1.

Simple linear networks using threshold activation functions partition the input space into decision re-
gions separated by lines, planes, and hyperplanes (a hyperplane is intuitively a plane in an high dimensional
space). Figure 12.4 shows classification tasks for 1-1 and 2-1 networks. In each case, the output node has
a threshold activation function and the network is being trained to classify inputs into one of two classes.
When the output node turns on (weighted inputs above threshold), the input is in class 1. When the output
node is off, the input is in class 0. On the left, the input space is 1-dimensional, since there is one input
node. The threshold functions divide the 1-dimensional input space into decision regions labeled “class 0”
and “class 1”, via a decision boundary, in this case a 0-d point (represented by a hatchmark in the graph).
On the right, the input space is 2-dimensional, and the decision boundary is 1-dimensional. The line again
partitions the input space into two decision regions, for “class 0” and “class 1.’

These ideas generalize to higher dimensions. The input space will in general have as many dimensions as
there are input nodes. The small networks in Figs. 12.4 and 12.5 have 1 and 2-d input spaces. A network
with 5000 input nodes has a 5000-dimensional input space. The decision boundary in the input space of a
network has as many dimensions as the number of input nodes minus 1. In the 5000-input node case, with
one output node, the decision boundary is a 4999-dimensional hyperplane that divides the input space into
two decision regions.

To summarize, for classification tasks we have:

Input space: the vector space corresponding to the input nodes of a network. It has as many dimensions
as there are input nodes. In the cases shown in figure 12.4 the input spaces are 1 and 2 dimensional.

Decision boundary: a point, line, or surface separating the input space into decision regions corresponding
to distinct categories. The boundary has as many dimensions as the number of input nodes minus

CHAPTER 12. SUPERVISED LEARNING 138

one. In the cases shown in figure 12.4 the decision boundaries are 1− 1 = 0 dimensional (a point) and
2 − 1 = 1-dimensional (a line).

12.5 Visualizing Regression as Fitting a Surface to a Cloud of
Points

The goal of a regression task is to create a network that produces outputs as close as possible to a set of dat-
apoints. Targets are real-valued. We can conceptualize regression as fitting a hypersurface (a generalization
of lines, planes, and other surfaces to arbitrary dimensions)6 as close to a cloud of data points as possible.7

In the simple case shown in figure 12.5, left, we just have 1 input and 1 output. This is like graphing a
function in high school algebra. The graph of the function is 1-dimensional, i.e. a line.8 The graph of
the function is one dimensional because there is one input node. However it is shown in a 2-dimensional
input-target space, which is 2 dimensional because there is 1 input node plus 1 output node. Input/target
pairs (i.e. rows of the labeled dataset) are plotted as points. Fitting the linear model, the neural network,
can be thought of as turning two knobs: one for the weight (which sets the slope), and one for the bias
(which sets the y-intercept). Think of trying to turn these knobs until the line (the “model”) fits the data
as best as possible. Training this kind of network is like fitting a linear regression model. Try to keep this
easy-to-visualize example in mind even for much more complex networks, where there are many more knobs,
and where the model being fit exists in many more dimensions.

Figure 12.5: A regression task for a 1-1 (Left) and a 2-1 network (Right) network of linear nodes. Datapoints
in the input-target space are shown in blue. The network implements a linear function from inputs to outputs,
which is a line in the two dimensional input-target space on the left, and a plane in the three dimensional
input-target space on the right.

Let’s see how this works in a slightly larger network, a network with 2 input nodes and 1 output node,
as in figure 12.5, right. Here the graph of the function computed by the network is a 2-dimensional surface,
and the input-target space of the graph is 3 dimensional (2 input nodes and 1 output node). Visualize the
algorithm fitting that surface so that it’s as close to the datapoints as possible. It’s like fitting the line in the
1-1 network case, but now we have more knobs (the two weights and the bias of the output node) for moving
the surface around. Each of the vectors in the 2-d input space is associated with a target value in the 1-d
output space. The surface has been fit to the points, so that any input will be associated with outputs as
close as possible to the target values.

So here we have:

Regression hypersurface: a generalization of the concept of a regression line to arbitrarily many dimen-
sions. Mathematically it is the graph of an n-dimensional hypersurface, where n is the number of

6See https://en.wikipedia.org/wiki/Hyperplane. An even more general concept is a hypersurface: https://en.

wikipedia.org/wiki/Hypersurface
7Regression models need not be “flat” like this. When sigmoidal node are used, for example, they will be more like wavy

curves and surfaces. But we will not consider those cases here.
8In mathematics, even a curvy line is 1-dimensional, and even a wavy plane is 2-dimensional, even if they can only be

visualized in a higher dimensional input-target space. Similarly for higher dimensions.

https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/Hypersurface
https://en.wikipedia.org/wiki/Hypersurface

CHAPTER 12. SUPERVISED LEARNING 139

input nodes. In the cases shown in figure 12.5 the hypersurfaces have 1 dimension (a line, for a neural
network with 1 input node) and 2 dimensions (a plane, for a neural network with 2 input nodes). It
is, in a sense, the “solution” a network learns for a regression problem.

Input-target space: the space that the regression hypersurface lives in, which has as many dimensions
as there are input nodes plus output nodes. The rows of the labeled dataset can be conceptualized
as a cloud of datapoints in this space. The goal of regression is to make the hypersurface as close to
that cloud of datapoints as possible. In the cases shown in figure 12.5 the input-target spaces have 2
dimensions (a neural network with 1 input node and 1 target node) and 3 dimensions (a neural network
with 2 input nodes and 1 target node).

Notice that the decision boundary in figure 12.4 (right) looks like the regression line in figure 12.5 (left).
Do not confuse these! In one case we have a decision boundary for a classification task computed by a 2-1
network; in the other case we have a regression line computed by a 1-1 network.

As soon as we have networks with more than 3 nodes, our ability to visualize things starts to break
down. But we have experience thinking about shapes in higher dimensions (for example via our studies of
dynamics in 4-dimensional state spaces, and recall our discussion of dimensionality reduction in section 6.3),
so we should be able to do it. The regression hypersurface computed by a network has as many dimensions
as there are input nodes. For example, if a linear network had 20 input nodes and 5 output nodes, its graph
would be a 20-dimensional hyperplane fit to a cloud of points in a 25 dimensional space.

12.6 Error

To assess how well a supervised learning algorithm is training a network to approximate a vector valued
function, we define an error function9 and then modify the weights and other parameters of a neural
network to get the value of this error function to be as small as possible (compare the intuitive overview in
Section 12.2). An error function can be thought of as a method for producing a number which describes how
well a network is doing at approximating the pattern-associations encoded by a labeled dataset. We call this
the overall error, since it is associated with the entire labeled dataset (as contrasted with errors associated
with particular outputs). In learning, the goal is to use mathematical techniques to change the parameters
of the network so that overall error is as small as possible.

In practice, to compute overall error, we compute errors for each row of the training subset of our labeled
dataset. We go through each in vector xr and see what output vector yr the network produces. The resulting
output dataset (see Chapter 7) has the same number of rows and columns as the target dataset. We then
go through each row yr of the output dataset and compare it with the corresponding row tr of the target
dataset. We often end up comparing things like t = (1, 1) and y = (.9, .7) by subtracting the components of
the two vectors, which gives us errors (1 − .9, 1 − .7) = (.01, .03).10

The concept of error should be intuitive. If we want our network to produce the output vector (1, 1, 1) but
instead it produces (−1, 0, .2), we have a few errors in the output. But if we train it and it starts to produce
the output vector (1, 1, .9), then we are doing much better! The first output is about 4 units “off”, but the
second output is about .01 off. That’s all the basic idea involves. Saying this mathematically requires some
notation, but remember all we’re ultimately doing is finding a number that says how far “off” the outputs
are from the target values.

There are many error functions that we can use to compute overall error.11 Here we are just introducing
the basic idea. We focus on an error function called sum of squared error or SSE.12

9These are also known as “cost functions”, “loss functions”, or “objective functions”.
10At the level of an individual node, an error is just the difference between what we wanted and what we get, a target value

minus an output value.
11One main consideration is whether you are training a network on a classification task or a regression task. A common

error function used in classification tasks is cross-entropy. Sum squared error, which we consider here (or its close cousin mean
squared error), is usually used for regression tasks, but it can also be used for classification, so it’s a good example to start
with.

12This presentation of SSE combines two separate sums: a sum over the components of a single error vector for one row of
training data, and a sum over all of these individual “row errors” in a training set or batch. However, “SSE” is often reserved
for the first sum, which is for one row only. Then in a separate step we reduce all of the row errors in a batch to an overall
error, either by taking a sum or mean of row errors. So we can have overall error as the mean or sum of the SSE for each row,

CHAPTER 12. SUPERVISED LEARNING 140

Suppose we are given a network and labeled dataset, and have computed the output dataset. To compute
SSE, we go through each row and subtract each output value from the corresponding target value. This
gives an error value for each row. We then square these errors and add the squared errors together. That
is the sum of squared errors. Figure 12.6 shows the computation for the case where there is a single output
node.13 In the case shown, outputs are very close to targets, and so the SSE is pretty low:

Figure 12.6: Computing SSE for a network with one output node. As can be seen, each output is just .1
below the target, and so SSE is pretty low.

The same idea works for a network with more than one output node, but in that case the squaring
operation must be defined for vectors. All this really amounts to is squaring target - output for each output
value, and then adding the results together, and it turns out we can express this concisely using some of the
vector operations we learned in the linear algebra chapter (chapter 6):

SSE =

R∑
r=1

(tr − yr) • (tr − yr)

That is, for each row r, we subtract the output vector from the target vector using component-wise subtrac-
tion, and then take the dot product of the resulting vector with itself to get the squared error for that row.
For example if t1 = (1, 1) and y1 = (2, 3), then (t1 − y1) = (1, 1) − (2, 3) = (1 − 2, 1 − 3) = (−1,−2). We
“square” this vector of errors by dotting it with itself: (−1,−2) • (−1,−2) = −12 + −22 = 5.

Sample computations for a network with two outputs are shown in figures 12.7 and 12.8. Notice that
SSE is low in figure 12.7, and higher in figure 12.8.

Figure 12.7: Computing SSE for a network with two outputs. Error is fairly low.

Figure 12.8: Computing SSE for a network with two outputs when error is higher, as might happen when
we start with random weights, which, for example, cause the outputs to always be 1.

or as the sum or mean of MSE for each row. These distinctions cannot be made using the current presentation, and so we plan
to disaggregate these concepts in a future version of this chapter.

13In these figures,
∑

R is shorthand for
∑R

r=1.

CHAPTER 12. SUPERVISED LEARNING 141

Low overall error (here low SSE) is something we generally see after training a network. When we start
with an untrained network that has random weights, error will be higher, as in figure 12.8.

Try some examples of your own to get a feel for when SSE is large vs. small.
Learning algorithms minimize SSE and other overall error metrics relative to training subset of the labeled

dataset. However, it is usually important to hold out some testing data as well, to see how well the network
generalizes to data it was not trained on. Thus we often have two measures of error when we are done
training a network: error for the training data, and error for the test data (see section 7.5).

12.7 Error Surfaces and Gradient Descent

Before we get to the main point of this section–gradient descent–we need to do a bit more visualizing. We
are going to talk about another type of graph, separate from the ones discussed in sections 12.4 and 12.5.
We will be talking about parameter spaces, or to make things easier, weight spaces (recall these have come
up in chapters 10 and 9). On top of the weight space we will plot overall errors. That is, for each possible
combination of weight values, we show what overall error (e.g. SSE) would result relative to our network
and training set. This gives us an error surface.

Note that error surfaces depend on the training set, and in particular targets, because this determines
SSE. If you change the training set, you change the error surface. Once you fix the training set, you can now
look at the error surface, which shows all possible errors for that network given the training set.

Figure 12.9 shows errors surfaces for two cases that we can visualize. On the left we have an error surface
for a 1-1 network where we are only adjusting a single weight. As we change that weight, SSE will change
too. On the right we have a 2-1 network where we are adjusting two weights. Again, as the two weights are
changed so will the SSE. Notice that in each case the error surface has a single minimum point, which turns
out to be convenient: our goal, after all, will be to find that lowest point, the configuration of weights where
overall error is lowest. But we are not always lucky enough to get such a surface, as we will see.

Figure 12.9: (Left) error surface for a 1-to-1 network where only the weight is adjusted. (Right) Error surface
for a 2-to-1 network where the two weights are adjusted. In each case, the error surface also depends also
the training data (the tables in figure 12.1).

These ideas generalize to higher dimensions, for networks with many parameters. As above, we can’t
visualize these cases directly, but it helps to have a visual template in mind. The error surface for a network
with n adjustable parameters is a surface in an n + 1 dimensional space (the n parameters plus the error
term). For a network where we are adjusting three weights, we have the graph of a function from the three
weights to the error, i.e. a surface in a 4-dimensional space. For each possible combination of three weights,
we can generate an error, and thus we have an error surface in a 4-d space. For a network with 150 weights,
we have an error surface in a 151 dimensional space.

CHAPTER 12. SUPERVISED LEARNING 142

For supervised learning tasks (regression or classification), our goal is usually going to be to minimize
the overall error function. We want to find values for the parameters that make overall error, relative to the
labeled dataset, as low as possible. It turns out there is a whole area of mathematics set up for problems
like that. It’s called optimization.14 Optimization problems involve finding either the minimum value or
maximum value of a function, relative to the set of all possible inputs to the function. Here the function is
the error function and the inputs are adjustable parameters, usually weight strengths and node biases.

Optimization is useful. We often have to make decisions that involves many different variables and
constraints. For example, suppose you want to buy a new laptop. You want the cost to be as low as possible,
but the quality as high as possible. You need to buy it within 5 days and you really want a warranty. Often
what you do is look at choices. When a tentative choice feels better, you go in that direction. If it feels
worse you might tell yourself “no, I dislike that, look for something else”. In this way you go back and
forth–generally in the direction of “better”–and settle in on a solution. Once again, the Goldilocks principle.

Optimization automates this kind of process, providing an automatic way to solve this kind of problem.
Optimization methods are used, for example, to determine the best ways to plant crops to maximize yield.
Supervised learning methods also make use of optimization. A labeled dataset describes an optimization
problem, a set of inputs that we want to associate with a set of targets. Mathematical optimization gives
us a way to automatically update the parameters of a network so that it does the best job possible on a
classification or regression task, producing outputs in response to inputs that are close as possible to their
targets.

Figure 12.10: Error gradient on an error surface. The actual changes that happen in the weight space are
shown on the horizontal axis.

The main method we will discuss for minimizing the error function is gradient descent.15 In this
method we start at some random point in parameter space. We begin with a network where the weights and
biases and other adjustable parameters are set to random values. In the 1-to-1 network we just randomize
that one weight. That puts it at a random place on the error surface over the weight space in figure 12.9
(left). Using the tools of calculus, we can then attach an arrow to any point on the error surface, which
says in what direction the surface is decreasing most rapidly.16 So we start at a random point, follow the
arrow down from there (changing the weights to new values), and then repeat the process. By iterating the
algorithm in this way we “descend the gradient.”

The process is illustrated in figure 12.10. The error surface has a bowl shape. Wherever you start in the
bowl, just follow the arrows down until you get to the low point. That’s it! That’s how it works.

14https://en.wikipedia.org/wiki/Mathematical_optimization.
15The gradient of an error function is a vector that points in the direction of steepest increase on the error surface. The

method of gradient descent involves changing a system in the direction of steepest decrease on the error surface, which is the
negative of the gradient of the error function.

16An excellent discussion of the calculus relevant to neural networks is https://explained.ai/matrix-calculus/.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://explained.ai/matrix-calculus/.

CHAPTER 12. SUPERVISED LEARNING 143

We use the “arrows” on the error surface to derive a learning rule, which produces a dynamical system on
weight space. In chapter 10 we mainly considered activation dynamics. Here we consider weight dynamics.
The weight dynamics are shown in the bottom horizontal line of the figure; in that line a one-dimensional
system describing how a single weight changes in order to implement a model of the training data. As noted
in chapter 10, when a “play” button is pressed in Simbrain a dynamical process is simulated. In this
case we will have a tools in Simbrain for running gradient descent using a play button, and observing error
reduction.17 What we are doing is like what we did there when we looked for fixed points of a recurrent
network. Here the initial conditions are random weight values, which put us at a random point in the error
surface, orbits are the paths we follow in weight space (which is our state space in this case), and we usually
end up at an attracting fixed point, a weight state with low error.

Unfortunately, error surfaces don’t always have just a single minimum point, as in the bowl example (if
they did, training networks would always be easy). They sometimes have multiple fixed points in separate
basins of attraction. These are “local minima”. Error surfaces can also have plateaus where the error will
only gradually change. Both cases are shown in figure 12.11. These can make finding the best solution
difficult. Much of the mathematical theory of optimization (and research in neural networks) is focused on
dealing with these “difficult” error surfaces.

We usually don’t have a picture of an error surface. Still, we can use a program like Simbrain to get a
feel for an error surface. To do so, we start at a random point in weight space, run the algorithm, and then
see what the lowest error we get is. If it does not seem so low, we try again.18 By repeatedly doing this we
get a feel for how many minima they are and how long it takes to get to them. Of course, for very large
networks, where training can take hours or days, we can’t to this, but for small toy networks we can.

Figure 12.11: (Left) an error surface for one weight, with two local minima and a plateau. (Right) An error
surface for two weights, with two local minima.

There is more to say here. A lot can go wrong, there are settings to adjust (like how far you go at each
iteration), etc. These details are studied in the mathematical field of optimization.

12.8 Expansion of these methods

This chapter has described some very general features of supervised learning. The history and details of
how these are applied in particular cases is spelled out in subsequent chapters. In chapter 13 we see details
of this type of algorithm for the case of a simple one-weight-layer network, and then we see how backprop
allowed the algorithm to be generalized to feedforward networks with more than weight layer. The key was
calculus: by figuring out how to update parameters to reduce error using calculus, a systematic method for
applying gradient descent to more complex networks was found.

17See the screenshot here: http://www.simbrain.net/Documentation/v3/Pages/Network/training/trainingDialog.html.
18It’s easy to try this in Simbrain. Load up a backprop network with a training set, and train. Periodically press the random

button and run again, and notice how the error changes each time. Again, this is almost exactly the same as searching for fixed
points of a dynamical system, with the state space here being a weight space.

http://www.simbrain.net/Documentation/v3/Pages/Network/training/trainingDialog.html

CHAPTER 12. SUPERVISED LEARNING 144

One feature of the revolution in neural networks that began around 2010 (see section 3.7) is that these
techniques became in a certain sense automated. Libraries were introduced that made it possible to define
any kind of layer and link between layers, and as long as certain structures were defined, the calculus could be
done automatically, allowing gradient descent to be used. This is sometimes called automatic differentiation,
and it can be done on an arbitrary computational graph. That made it possible to really define all kinds of
crazy networks and structures and layers and update rules and train them using tradient descent. Examples
include convolutional layers (chapter 14) and transformers (chapter 17).

Because these methods are so powerful, it’s often useful to find ways to apply them even when it seems
they don’t apply. For example, as we see in chapters 16 and 20, there are various ways it has been possible
to use these same techniques–which work best with feedforward networks–on or with recurrent networks.

12.9 SSE Exercises

1. Given targets (0, 1, 0) and output activations (1, 1, 1) what is SSE?
Answer:
(0 − 1)2 + (1 − 1)2 + (0 − 1)2 = 1 + 0 + 1 = 2

2. Given targets (1, 1, 1) and output activations (2,−1,−2) what is SSE?
Answer:
(1 − 2)2 + (1 − (−1))2 + (1 − (−2))2 = 1 + 4 + 9 = 14

3. Given targets (1, 1, 1) and output activations (1, 1, 1) what is SSE?
Answer:
(1 − 1)2 + (1 − 1)2 + (1 − 1)2 = 0 + 0 + 0 = 0

Chapter 13

Least Mean Squares and Backprop
Jeff Yoshimi

Having introduced supervised learning in chapter 12, in this chapter we consider several supervised learning
algorithms for feedforward networks in depth, and consider their implications for cognitive science. First, an
early form of supervised learning called the “Least Mean Squares rule” or “LMS rule”. The remarkable thing
about LMS is that almost all of the advancements in the area of neural networks in recent years arguably
involve variations on this one simple algorithm, that allow it to solve increasingly complex problems. LMS
itself is limited insofar as it can only be used to train networks with one weight layer. This takes us to a
second algorithm, backpropagation or “backprop”, which extends LMS in a way that allows it to be used to
train many-layered networks. The hidden layers of a feedforward network develop internal representations,
which remap the input space of a neural network in useful and often psychologically realistic ways.

13.1 Least Mean Squares Rule

We now consider our first supervised learning algorithm in detail: the Least Mean Squares rule or “LMS”
or “Delta rule”, which uses a form of gradient descent to minimize the error on a training set. It makes a nice
contrast with Hebbian learning. Although the rule itself is similar in form, it is adaptive. While repeated
application of the Hebb rule leads weights to explode to maximum or minimum values, LMS follows the
Goldilocks principle, so that the weights zoom in on target values until the output is “just right.”1

Note that LMS is an algorithm that only works with 2-layer networks. It cannot be directly applied to
multi-layer networks. That is an important limitation that is overcome by backprop, as we will see.

LMS follows the template from section 12.2: begin with random parameters (weights and biases), iterate
through each of the input patterns, compute errors, and use these errors to update weights and biases in
such a way that errors are reduced. We will focus on the case of a single linear output node here. 2 When
applying the rule, a change in a weight wi,j is equal to the product of a learning rate ϵ, the activation of the

1This rule is a descendent of Rosenblatt’s perceptrons ([133]; also see chapter 3), which had one weight layer and a single
binary output that was applied to classification tasks. His perceptron learning algorithm involved an if-then rule which would
apply a form of gradient descent if an input was misclassified. Since both targets and outputs were thresholded binary units,
this led to weight and bias updates that were “jittery” and sometimes unstable. The LMS rule, associated with Widrow and
Hoff, was similar to the perceptron learning rule but worked with linear or sigmoidal outputs. (This is a natural progression
insofar as a sigmoidal activation function can approximate a threshold activation function when the slope at the inflection point
is steep enough). It was derived using calculus by finding the derivative of a point on an error surface over parameter space, and
updating the parameters in a direction that led to error reduction (see section 12.7). It thus replaced the effort to create learning
rules using intuition with a principled mathematical way of deriving learning rules mathematically. The same mathematical
methods are still in use today and have enabled many of the incredible advances that have occurred in the field. Note that
terminology in this area is not entirely consistent. For example, any network trained by LMS is often called a “Perceptron”.

2We will not formally derive it, or state the algorithm in its full generality. However, the derivation is not too difficult: the
key step involves taking the derivative of the error function with respect to a weight (how much is error changing as a function
of that particular weight). A brief derivation is at https://en.wikipedia.org/wiki/Delta_rule and a more detailed discussion
is at http://uni-obuda.hu/users/fuller.robert/delta.pdf. In subsequent planned sections we derive the rule, and extend
it rule to handle many outputs, and more complex activation functions.

145

https://en.wikipedia.org/wiki/Delta_rule
http://uni-obuda.hu/users/fuller.robert/delta.pdf

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 146

input node to that weight, ai, and the difference between a desired and actual activation (tj − aj) for that
node:

∆wi,j = ϵai(tj − aj)

Since (tj − aj) is error (with a small “e”), the rule says that the change in a weight is equal to a learning
rate times the activation of the input node for that weight, times the error (that is, ∆wi,j = ϵaiej), This
means that for positive inputs, weights are changed in the direction of error.3 Notice that the form of the
rule is identical to the Hebb rule, except with output activation replaced by error.

LMS changes the bias bj of an output node j as follows:

∆bj = ϵ(tj − aj)

That is, the change in a bias for a node j is just the learning rate times the error on output node j.4

The LMS rule directly instantiates the Goldilocks principle. When heating up soup, or a bath, or a
room, we adjust up and down based on errors.5 Oh, it’s too cold, let’s heat it up. Oh wait, now it’s too hot,
cool it down. Ok now it’s perfect, stop changing things, it’s just right. In a similar way here we increase
and decrease parameters until error is as low as possible. Consider how this works in a few cases where we
assume a positive input:

• Target is 2 and output is 1. Output is too low. Error is 2− 1 = 1 and so we make the weight stronger.

• Target is 1 and output is 2. Output is too high. Error is 1−2 = −1 and so we make the weight weaker.

• Target is 1 and output is 1. Output is just right. Error is 1 − 1 = 0 and so we don’t change a thing.

13.2 LMS Example

In this example and in subsequent practice questions, assume we have a simple 1-1 feed-forward network (as
in the left panel of figure 12.1), and that the slope of the output node is 1 and bias is 0. So we have two
nodes, with activations a1 and a2, and a weight w1,2. We also assume a very simple labeled dataset with a
single row: one input value and one corresponding target value. That is:

inputs targets
1 2

We label the target value t. We will not consider updates to the bias term. As in the discussion of the Hebb
rule (chapter 9), we use the prime symbol ′ to indicate a variable after a delta term has been applied.

We can now work out a complete example, and in the process see how LMS implements gradient descent.
Suppose we are given:

a1 = 1

w1,2 = 1.5

t = 2

ϵ = .5

With this information we can determine: (1) the output activation a2 of the network (our “forward pass”), (2)
SSE, (3) the updated weight value at the next time step, which we designate w′

1,2, (4) the output activation

3The input scales things so they work for positive or negative inputs and so that changes are bigger for bigger inputs, and
the learning rate allows us to control how quickly learning happens. Even though we are giving interpretations for each factor
in the rule, it can be derived purely from calculus.

4Note that this is really the same as the weight change rule, if we think of the bias in terms another input neuron, clamped
at 1, and attached to this output neuron by a modifiable weight (which is in effect the bias).

5In fact, the LMS rule is comparable to a bunch of thermostats, one for each output node of a network, where the targets
correspond to the settings on the thermostats.

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 147

a′2, and (5) error at the next time step, SSE′. We can then repeat these steps and check to see that SSE is
reduced over time, which moves us down the error surface for this task, which is shown in Fig. 13.1.

(1) The network will produce a 1.5 in response to an input of 1, since the input activation is 1, the weight
is 1.5, and 1 · 1.5 = 1.5 (we are, again, assuming output bias of 0 and slope of 1).

(2) SSE for these simple networks and labeled datasets is very easy, since there is just one row, one target
value, and one output value. That is, SSE = (t− a2)2 or in this case (2− 1.5)2 = .52 = .25. Notice that this
puts us at the point (1.5, .25) in the graph in Fig. 13.1.

Figure 13.1: Gradient descent on the error surface for the LMS example discussed in Section 13.2. As the
LMS rule is applied the weight strength changes in a way that minimizes sum squared error.

(3) Applying the formula above

∆wi,j = ϵai(tj − aj)

we get

∆w1,2 = .5 · 1 · (2 − 1.5) = .25

We then use ∆w to update the weight value from its old value of 1.5, so that

w′
1,2 = w1,2 + ∆w1,2 = 1.5 + .25 = 1.75

So our new weight value is 1.75.
(4) With this new weight, the network produces an output a′2 = 1 · 1.75 = 1.75.
(5) The squared error is now (2 − 1.75)2 = .252 = .0625, whereas before it was .25. So we have moved

to the point (1.75, .0625) in the graph of the error surface in Fig. 13.1. An improvement! We have moved
lower on the error curve; we have descended the error gradient.

In subsequent time steps we get:

w′′
1,2 = 1.75 + .5 · 1 · (2 − 1.75) = 1.875

w′′′
1,2 = 1.875 + .5 · 1 · (2 − 1.875) = 1.9375

As you can see, applying this rule leads to SSE getting lower and lower, and the output getting closer and
closer to the desired output of 2. Ten successive points on the error curve are shown in figure 13.1.

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 148

13.3 Linearly Separable and Inseparable Problems

Two-layer feed-forward networks with linear output nodes, like LMS networks, are in a certain way limited.
That limitation played an important role in the history of neural networks, paving the way for studies of
internal representations in neural networks, which had lasting consequences both in machine learning and in
connectionist applications of neural networks to psychology. The limitation concerns the linearly separable
classification tasks. Thus, in this section, and in much of the rest of the chapter, we focus on classification
rather than regression.

To understand what linear separability (and inseparability) are, recall that a classification task assigns
each input to a different category. If we focus on networks with two input nodes and one output node, then
we can plot a classification task as in figure 12.4 (Right), but we can also directly label the points as 0 and 1,
as in figure 13.2. When we create this type of plot, it often becomes immediately clear what the relationship
between the categories is, in the input space. In figure 13.2 (Left), for example, we can immediately see
that the two classes are distinct in the input space. Notice that we can separate the two categories by
drawing a line between them, as in figure 13.2 (Middle). Such a line is, as we saw in section 12.4, a decision
boundary, which has the effect of separating the input space in to two decision regions, one for each possible
classification. Input vectors in the region below the decision boundary will be classified as 0, while those in
the region above the boundary will be classified as 1. However, note that for the task shown in figure 13.2
(Right) there is no way to use a line to separate the 0’s and 1’s perfectly.

Figure 13.2: Three classification tasks. (Left) A linearly separable task. (Middle) A decision boundary that
will solve the task. (Right) A linearly inseparable task and a non-linear decision boundary that can solve it.

If a classification task can be solved using a decision boundary which is a line (or, in more than 2-
dimensions, a plane or hyperplane), the classification problem is called a linearly separable problem.
Figure 13.2 (Middle) shows a linearly separable problem. When we cannot properly separate the categories
with a line (or hyperplane), as in figure 13.2 (Right), the problem is linearly inseparable, there is no way
to draw a line which separates the 0’s and 1’s in that example. There is no linear decision boundary for that
problem (though there are non-linear decision boundaries that perfectly separate the classes, like the wavy
curve shown in the figure).6

The goal of supervised learning of classification tasks is to set the weights of a network so that the
decision boundary properly separates the two classes. The values of the weights and the output bias are like
knobs that, when turned, will change where the decision boundary is: it can be rotated around and moved
up and down. We want to turn the knobs so that they two classes are properly separated.7 However, LMS
only allows linear decision boundaries. Other algorithms have more knobs, and can be used to create more
complex decision boundaries and decision regions.

Logic gates provide a convenient and historically important class of tasks that can be used to further
illustrate these ideas. In appendix A it is shown that logic gates can be represented as 2-1 feed-forward neural
networks. Pairs of input nodes corresponding to statements P and Q connect to output nodes representing
boolean combinations of truth values (0 for false, and 1 for true): P AND Q (true when both are true), P

6First, note that in the case shown, we could still fit a line to the problem and we’d just have some error. Second, we will
see that while LMS cannot solve this task, since it uses linear decision boundaries, other supervised classification algorithms
like backprop exist that can solve these types of non-linearly separable classification task

7Doing this amounts to minimizing error. When the decision boundary properly separates the two classes, SSE will be 0. If
not, as in Fig. 13.2 (Right), there will be some error. What will SEE be in that case?

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 149

OR Q (true when at least one is true), and P XOR Q (true only when one is true). These can be depicted
using the same kinds of classification plots as above (here using open dots for 0, and filled dots for 1). Fig.
13.3 shows the input space for the AND, OR and XOR logic gates. Note that AND and OR are linearly
separable, and that XOR is not.

Figure 13.3: Input spaces for AND (left), OR (middle), and XOR (right). Open dots correspond to 0, filled
dots to 1. Which tasks are linearly separable?

Now we get to the major problem affecting two layer networks trained using LMS: they cannot solve
linearly inseparable classification tasks, like XOR. That two-layer linear networks cannot solve these problems
was a major issue in the early history of connectionism. In 1969 Marvin Minsky and Seymour Papert
published a book called Perceptrons (perceptrons were 2-weight-layer networks Rosenblatt trained; see section
3.4). In this book Minsky and Papert showed that such networks could not solve linearly inseparable problems
[107]. This had a disastrous impact on neural network research in the following decade, during the “dark
ages” of neural networks (see section 3.5). As Rumelhart and McClelland recall:

Minsky and Papert’s analysis of the limitations of the one-layer perceptron8, coupled with some
of the early successes of the symbolic processing approach in artificial intelligence, was enough
to suggest to a large number of workers in the field that there was no future in perceptron-like
computational devices for artificial intelligence and cognitive psychology (PDP 1, p. 112) [136].

However, as Rumelhart and McClelland go on to point out, these results don’t apply to neural networks
with more than 2 layers [136]. In fact, it’s not too hard to solve XOR by hand, just by combining an or gate
with an intermediate and gate (see appendix A). The key point, that we will keep coming back to, is that
intermediate representations allow complicated and linearly inseparable problems like XOR to be solved.9

So multi-layer feed-forward networks can solve linearly inseparable problems. Great! But alas, there was
another problem. Initially there was no way to train multi-layered networks. LMS only works on 2 layer
networks. Sure we can hand-craft solutions in particular cases (like the combined and and or gates approach
to XOR), but can we make the process automated? Initially the answer was no (HISTORY REF), but later
it was yes.10

Once algorithms were discovered that could be used to train multi-layer networks, it became possible
to have networks learn solutions to linearly inseparable classification tasks (by finding non-linear decision
boundaries) and to deal with much more complex problems than had previously been possible. The most
famous algorithm of this type was backprop, which we turn to now.

8They are referring to a single weight layer connecting two layers of nodes. So what Rumelhart and McClelland call a
“one-layer” network is what we have called a “2-layer” network

9In fact, it has since been shown that multilayer neural networks with sigmoidal activation functions in the hidden layers
are universal approximators in the sense that they can, in principle, approximate almost any vector-valued function (more
specifically, any “Borel measurable function from one finite-dimensional space to another” [69]. This has come to be known as
the universal approximation theorem, and there is now a detailed Wikipedia page on the topic: https://en.wikipedia.org/

wiki/Universal_approximation_theorem.
10Minsky and Papert, who first clearly identified this problem, recognized that adding hidden layers could surmount the

limitations they described. However, they thought that multi-layer networks were too powerful, describing them as “sufficiently
unrestricted as to be vacuous” (Rumelhart and McClelland, p. 112) [136]. In particular, Minsky and Papert pointed out that
no one knew how such a network could be trained to solve specific pattern association tasks [107].

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 150

13.4 Backprop

In this section we cover what is probably the best known form of supervised learning: backpropagation
(or “backprop”). Backpropagation is a powerful extension of the Least Mean Square technique. As we
saw, LMS only works for two-layer networks. Backprop works for a much broader class of networks, in
particular networks with non-linear activation functions containing one or more hidden layers. As we will
see, these hidden layers allow a network to transform inputs into different types of representation, and in
doing so makes them quite powerful (almost all modern neural networks use variants of backprop), and also
psychologically interesting.

Backprop can be thought of as a generalization of the LMS technique or “Delta rule” described in the last
few sections. In fact, backprop is sometimes called the “generalized delta rule.” This rule had been proposed
as early as the late 1960s / early 1970s [21, 162] and was independently discovered by several theorists in
the 1980s [84, 122].11 It was popularized by Rumelhart, McClelland, and Williams in the late 1980s [136].
The discovery and popularization of backprop led to a revival of interest in neural networks in the 1980s and
1990s, following the “dark ages” of the 1970s (again, see chapter 3).

We will not cover the details of the backpropagation algorithm here12, but will instead describe it in a
qualitative way. In fact, it is identical to LMS at the output layer, but adds a way to update the hidden
weights. In fact, the weight updates are also almost the same, but the computation of the error is more
complex, because we don’t have direct access to the targets. That is, for a weight wi,j connecting an input
node ai to a hidden layer node aj , the update rule is:

∆wi,j = ϵaiej

Where ej is now just a different kind of error. This error is computed by a kind of reversal of how weighted
inputs are computed in forward propagation. When weighted inputs or net inputs (see chapter 5) to a node
are computed, activations are multiplied by intervening weights and added together. In linear algebra terms,
the dot product of an input vector and fan-in weight vector is taken. This propagates activation forward.
But now, we do the reverse. We take the errors on nodes at some level of a feedforward network, and
multiply them by the intervening weights from the previous layer, and add the resulting products. That is,
we backpropagate error. The idea is illustrated in figure 13.4. In the example shown, assume the weights
from the hidden unit to the output are 1, so that the backpropped error is 2 ∗ 1 + 0 ∗ 1 = 2. That error can
then be used to update w1,2 using ∆w1,2 = ϵa1e2. Notice that all that has changed from LMS is that we
got the error via this backpropagation procedure.13

Intuitively, this corresponds to how much a hidden unit contributes to an output nodes’ error. It’s as if
“blame is assigned”, and on this basis the weights to the hidden layer are updated. The rule can be applied
recursively, starting at the final output layer of a feedforward network and moving backwards through all
previous layers. Thus it can be used to train many-layered networks.

As with LMS, backprop works by minimizing an error function with respect to a training set, so that
we have gradient descent on an error surface. However, since multi-layer feed-forward networks are more
complex than 2-layer networks, the error surface is more complicated. With two-layer linear networks, the
error surface has a relatively simple bowl-like structure, which often has a single minimum value at the
low-point of a “bowl” shape. With a multi-layer non-linear network, the error surface can be more complex
and wavy, and there can be multiple local minima (compare figure 12.11). These local minima can “trap”
the gradient descent procedure, producing sub-optimal solutions.

One simple way to try to deal the issue is by re-initializing the parameters and re-running the algorithm.
Each time this is done, the system moves to a different point on the error surface and tries finds the local
minimum from that spot. By trying multiple times one can “search” for the lowest minimum possible.14

This is like dropping a marble at different spots on the error surface and comparing how low the marble goes
each time. In this way we can find the lowest of several local minima (which might turn out to be the global

11A detailed study of the history of backprop, with reference to others beyond those already cited, is [139], available at
https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html.

12Though, as with the details LMS, a detailed discussion of backprop is being planned now.
13If ϵ = 1, the weight w1,2 will be updated from 1 to 1 + 1 · 1 · 2 = 3. This will improve a3 but make a4 worse (however,

repeated application of the rule with a lower learning rate ϵ would reduce error).
14Compare the way we searched for fixed points in chapter 10, by starting at different random points in state space.

https://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 151

Figure 13.4: How error is backpropagated. Output errors are multiplied by intervening weights and added
together. In this example, assume the target values are t3 = 3 and t4 = −1 and the weights are all 1. The
errors at the output layer are e3 = 3 − 1 = 2 and e4 = −1 − (−1) = 0. These errors are multiplied by the
intervening weights to the hidden unit and added together (the errors are “backpropagated”) to get a new
error e2 = 2 ∗ 1 + 0 ∗ 1 = 2 at the hidden unit shown.

minimum) and in this way we can try to improve a network’s performance on a task. In practice, however,
one uses advanced optimization techniques that do things to automatically search for a global minimum.15

13.5 XOR and Internal Representations

We have not described in detail how the backprop algorithm works. However, we can get insight into what it
does by considering what happens in the hidden layer of a network trained using backprop. In particular, we
can begin to understand how multi-layer networks, like our brains, can solve problems by remapping input
spaces to hidden unit spaces that contain useful internal representations.

The classic example to illustrate these ideas is the XOR problem. Recall that XOR, considered as a
vector valued function, is not linearly separable (figure 13.3, right). Here is the labeled dataset we would
use to train a network to implement XOR:

inputs targets
x1 x2 t1
0 0 0
1 0 1
0 1 1
1 1 0

As we saw, two-layer networks with linear units cannot solve this type of problem, but a three-layer network
with non-linear units can solve it. This is easy to confirm in Simbrain: try training an LMS and Backprop
network on this data, and notice the difference in the minimum error you can achieve in the two cases.

The key to backprop’s superior performance is the way it re-maps the linearly inseparable problem in the
input space to a linearly separable problem in the hidden unit space, as shown in figure 13.5. The crucial
thing the hidden layer did was transform the input layer representation into a new internal representation,
which includes a representation of “only one unit is on” and another representation of “both units are in the
same state.” These two states are now linearly separable, and the output layer can easily separate them.
The solution shown in the figure was produced by training a 2-2-1 network using backprop. Other solutions
(corresponding to other minima in the error surface) can also be found. You are encouraged to try the
experiment yourself in Simbrain. Train a backprop network on XOR, get it to a minimum on the error
surface, and then check to see what hidden layer activations occur for each input.

15Currently the industry standard seems to be the “Adam” method: https://arxiv.org/pdf/1412.6980.pdf.

https://arxiv.org/pdf/1412.6980.pdf

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 152

Figure 13.5: A remapping of the input space to the hidden unit space in the XOR problem. Note that the
bottom panel shows the input space for XOR, and that it is linearly inseparable. The network then maps
(0, 0) and (1, 1), to (0, 0) in the hidden unit space. (0, 1) and (1, 0) are mapped to (0, .5) in the hidden unit
space. Now notice that the hidden unit space is linearly separable! Also notice that the hidden unit space
has developed an internal representation of the two main cases of interest: just one unit is one (represented
by (0, .5)) and both units are in the same state (represented by (0, 0)). Thus the separated hidden unit states
can be mapped to the appropriate output states.

13.6 LMS Exercises

For all questions assume output nodes have a linear activation function (no clipping) and bias = 0.
1. Given a1 = 1, t2 = 4, a2 = 2, ϵ = 1, what are e2 and ∆w1,2?
Answer:
(1) e2 = t2 − a2 = 4 − 2 = 2
(2) ∆w1,2 = ϵa1e2 = 1 · 1 · 2 = 2

2. Given a1 = 1, t2 = 1, a2 = 2, ϵ = 1, what are e2 and ∆w1,2?
Answer:
(1) e2 = 1 − 2 = −1
(2) ∆w1,2 = ϵa1e2 = 1 · 1 · −1 = −1

3. Given a1 = 1, t2 = 2, a2 = 2, ϵ = 1, what are e2 and ∆w1,2?
Answer:
(1) e2 = 2 − 2 = 0
(2) ∆w1,2 = ϵa1e2 = 1 · 1 · 0 = 0

4. Given a1 = 1, t2 = 1, a2 = 9, ϵ = .25, what are e2 and ∆w1,2?
Answer:
(1) e2 = t2 − a2 = 1 − 9 = −8
(2) ∆w1,2 = ϵa1e2 = .25 · 1 · (−8) = −2

5. Given a1 = 1, w1,2 = 1, t2 = 2, ϵ = 1, what are the initial activation a2, error e2, and ∆w1,2, and after
one weight update, the updated weight w′

1,2, updated activation a′2 and updated error e′2?
Answer:

CHAPTER 13. LEAST MEAN SQUARES AND BACKPROP 153

(1) a2 = a1 · w1,2 = 1 · 1 = 1
(2) e2 = t2 − a2 = 2 − 1 = 1
(3) ∆w1,2 = ϵa1e2 = 1 · 1 · 1 = 1
(4) w′

1,2 = w1,2 + ∆w1,2 = 1 + 1 = 2
(5) a′2 = a1 · w′

1,2 = 1 · 2 = 2
(6) e′2 = (2 − 2) = 0

6. Given a1 = 2, w1,2 = 1, t2 = 3, ϵ = .1, what are the initial activation a2, error e2, and ∆w1,2, and after
one weight update, the updated weight w′

1,2, updated activation a′2 and updated error e′2?
Answer:
(1) a2 = a1 · w1,2 = 2 · 1 = 2
(2) e2 = t2 − a2 = 3 − 2 = 1
(3) ∆w1,2 = ϵa1e2 = .1 · 2 · 1 = .2
(4) w′

1,2 = w1,2 + ∆w1,2 = 1 + .2 = 1.2
(5) a′2 = a1 · w′

1,2 = 2 · 1.2 = 2.4
(6) e′2 = (3 − 2.4) = .6

7. Given a1 = 1, w1,2 = 3, t2 = 1, ϵ = 1, what are the initial and final error e2 and e′2 after one weight
update? Answer:
(1) e2 = 1 − 3 = −2
(2) e′2 = 1 − 1 = 0

8. Given a1 = 1, w1,2 = −1, t2 = 1, ϵ = 1, what are the initial and final error e2 and e′2 after one weight
update? Answer:
(1) e2 = 1 − (−1) = 2
(2) e′2 = 1 − 1 = 0

Chapter 14

Convolutional Neural Networks
Jeff Yoshimi, Pierre Beckmann

Convolutional neural networks are a prominent type of deep network. They are a kind of many-layered net-
work that is often used for processing visual inputs, like recognizing patterns in images or movies, though they
have broader applications. They make use of a special kind of mapping between node layers, a convolutional
layer.

Convolutional neural networks were the first notable deep networks that got deep learning out of its
second “dark age”, by stacking a large number of hidden layers (following the first resurgence of interest in
neural networks in the 1980s and 1990s; chapter 3).1 They were trained using new tricks and techniques,
like convolutional layers, graphical processing units for fast parallel computation, and the Relu activation
function discussed in chapter 5. These advances made it possible to use the same types of network discussed
in chapter 13 on much more difficult problems.2

In terms of engineering, these convolutional networks have been associated with improvements in image
recognition, speech recognition, language translation, and in many other areas [85, 54]. They do this by
creating hierarchies of representations, corresponding to increasingly complex features of an input image. As
we saw in chapter 4 (see figure 4.7) when such networks are trained to recognize images, they develop internal
representations that are extremely similar to those developed by the human visual system. Thus they are
relevant both to neuroscience (where they can describe the behavior of neurons in the visual system), and
to psychology (where they can describe internal representations humans might rely on).

The topic of convolutional networks is quite involved, and the field is active and continues to grow. Here
we will describe some of the main concepts and some of their applications to neuroscience and psychology.

14.1 Convolutional Layers

The key idea with a deep network is to use a special type of weight layer called a convolutional layer to
efficiently learn to recognize features in a previous layer.3 Until now we’ve been dealing with weight layers
that connect all the nodes in a source layer to all the nodes in a target layer; these are sometimes called
“dense layers” or “fully connected” layers. By contrast, convolutional layers involve a set of weights that
are “scanned” or “passed” or “convolved” over the source layer’s activations to produce activations in a
target layer. This can also be called a “convolution” of the source layer activations. Networks that feature
convolutional layers are called “convolutional neural networks” or “CNNs”.

The set of weights in a convolutional layer are called a filter or kernel. The weights in a filter are
scanned over the source layer to produce outputs. This is a new idea. Rather than a fixed set of weights in

1The internal representations of these networks–usually 3 node-layer networks trained by backprop–allowed them to solve
previously unsolvable problems like XOR (figure 13.5). These representations were often psychologically realistic (section 15).

2This history is well told by Kurenkov in section 3 of https://www.skynettoday.com/overviews/neural-net-history. As
he summarizes, “Deep Learning = Lots of training data + Parallel Computation + Scalable, smart algorithms.”

3An outstanding visual discussion of the concept of a convolutions is at https://youtu.be/KuXjwB4LzSA

154

https://www.skynettoday.com/overviews/neural-net-history
https://youtu.be/KuXjwB4LzSA

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 155

Figure 14.1: A convolutional layer and its components. From left to right: an input image, a 3x3 convolu-
tional filter (which detects edges with a −45◦ angle), and the resulting feature map. The filter is scanned
across the image. At each stage of this scanning process, the dot product of the filter’s receptive field in
the input image is computed and used to populate the feature map. This whole process is known as a
convolution and a layer like this is a convolutional layer. The filter itself is a set of shared weights and so
this is essentialy a complex form of weight layer.

a fully-connected weight layer, we have a small set of weights that are reused or shared during the scanning
operation (this is also known as “weight sharing”).

The source layer of a convolutional layer is often a 2d array, prototypically an input image, and so we
can think of source layer activations as pixels and the source layer as a pixel array or input volume (even
when the input is not an image, this language is useful). Filters are like small pixel patterns that we slide
across the whole pixel array, which “light up” most when they are on top of a similar pixel pattern. The
filter can be thought of as is if it were moved from left to right and top to bottom of the pixel array. At
each stage of the scanning process, it is multiplied by the patch or “receptive field” of the pixel array it is
on top of.4 The multiplication is a dot product (see chapter 6), where each weight in the filter is multiplied
by the corresponding activation of the pixel array, and the results are added together. Recall that the dot
product computes something like a similarity score: the more the filter and the pixels match, the greater
the dot product will be. Each dot product is used to populate one activation in the target layer. Thus,
the convolutional layer computes a kind of sliding dot product with the source activations, which highlights
where the filter matches the pixel array.

The number of pixels the filter moves at each step is called the stride. Strides can be different in different
directions, but we will assume they are the same in all directions. One issue that comes up is the edges,
which the filter can’t be passed over. To handle this, padding can be added to the input volume, in the
form of extra zeros around the edges of the input pixel array. This can be done in such a way that the
output volume ends up having the same shape as the input volume (more on this below).5

In practice, convolutional layers operate on a set of matrices (an input “volume”) or a batch of these
volumes (a 3d or 4d array; a rank 3 or 4 tensor; see section 6.13). The output is often also a volume or batch
of volumes. How filters work on volumes is discussed below; we start with the simple case where the input
and output of the convolutional layer are matrices, which, again, we refer to as a pixel array and feature
map.

The idea is illustrated in figures 14.1 and 14.2. In this example, all the numbers are included so you can
easily check how the computations are done. A 3 × 3 filter is passed over a pixel array, from left to right
and top to bottom. At each moment during this scanning process, the dot product is computed between

4To get a better feel for how this works videos are helpful. A good place to start is with the first animated gif here:
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks. This video is also great:
https://youtu.be/KuXjwB4LzSA. Also note that in practice this operation is done in parallel: separate processors handle each
multiplication.

5This page contains an interactive tool that can be used to understand these concepts: https://distill.pub/2019/

computing-receptive-fields/.

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://youtu.be/KuXjwB4LzSA
https://distill.pub/2019/computing-receptive-fields/
https://distill.pub/2019/computing-receptive-fields/

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 156

Figure 14.2: Worked example of a convolutional layer. Notice that the feature map has the highest values
where the filter matches the pixel array. In the case shown, the filter matches the pixel array in one pixel
only. Imagine the filter sliding over the pixel array, and computing dot products (here: numbers of matching
1’s), which are used to populate the feature map.

the filter and its receptive field in the source matrix (the part of the image the filter is on top of). Since
the input image and the filter are both binary, the dot product simply counts how many places the filter
overlaps its receptive field as it is scanned over the image. In the example shown, it overlaps in one place,
in the bottom right of the filter. So that entry in the target layer is populated with a 1. Notice that this
filter produces the highest value of 3 only when it is directly on top of the line in the source layer. Try to
understand how all the target layer activations are computed. You can also try to work out what would
happen if the filter were changed, or if the image were changed.

The output of a convolutional layer is called a feature map. In these examples, the filter is an edge
detector, which detects edges at a −45◦ angle, that is, edges shaped like a backslash ‘\’. In the resulting
feature map, notice that the activation is highest when the filter is directly on top of the backslash shape in
the happy face, but also produces some activation wherever it is on top of any kind of active pixel. Thus,
the feature map gives a sense of where this kind of edge occurs in the input image.6

Again, this is totally different from the weight layers we have been studying throughout the book: there
are no fixed connections at all. Instead it is like there is a little floating scanner (the filter or kernel) that
gets passed over source layer activations to produce output activations.

There is a performance advantage to these convolutional layers, thanks to the weight sharing. All that
must be trained is (in the example shown in figure 14.1) 3 × 3 = 9 weights, rather than the 81 × 49 = 3969
weights that would be required in a fully connected dense layer from the input layer to the feature map.
This is a huge performance gain and part of what made it possible with deep learning to train such large
networks.

Filters like this edge detector are not programmed. This is a neural network after all, and neural networks
are trained, not programmed (section 1.2), usually using a form of gradient descent (section 12.7). Networks
trained on vision tasks do not need to be told that edge detectors are useful in early stages of processing.
They simply emerge as a structure that supports pattern classification when training a network.

14.2 Applying a Filter to a Volume

So far we have considered an artificial example where the input, filter, and feature map were matrices.
However, the power of CNNs is that they can deal well with more complex tensors. In the context of image

6The code used to generate figure 14.2 is available online, and can be used to edit a small filter and kernel to get a feel
for how they produce a feature map. See: https://colab.research.google.com/drive/1ywr3z8HRXYNPK-vd34kAATUPVWwwFqQE?
usp=sharing.

https://colab.research.google.com/drive/1ywr3z8HRXYNPK-vd34kAATUPVWwwFqQE?usp=sharing
https://colab.research.google.com/drive/1ywr3z8HRXYNPK-vd34kAATUPVWwwFqQE?usp=sharing

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 157

Figure 14.3: Applying a filter to an input volume. On the left is an input volume, in the middle is a
filter (which includes three sub-filters). On the right is the output volume that results from convolving or
“combing” the filter over the input. Each sub-filter is convolved with each input channel, and the results are
added together at each stage of the convolution.

processing (and in most applications of convolutional networks), the input is a volume, a set of multiple
stacked matrices or channels, a rank 3 tensor or 3d array.

To get an initial feel for this situation, think of the filter as a set of filters, one “sub-filter” (our term) for
each input channel. This set of filters is “combed” across the input volume, in the sense that each sub-filter is
convolved with a corresponding input channel, and the results are then added together and used to populate
one entry in the output matrix. Figure 14.3 gives a sense of how it works. Convince yourself that the shapes
make sense.

But the “combing” idea in figure 14.3 is just a way to ease you into thinking about how convolutions
work in practice. Instead of thinking about sets of filters, we can think about filters as volumes that act on
other volumes, as in figure 14.4. That is, we can collapse the “sub-filters” of a filter into a single volume,
a little Rubik’s cube type of object, that is convolved with the input as follows. We imagine moving the
filter “through” the input volume, top-to-bottom and left-to-right, and at each stage of this operation we
dot the filter with the underlying receptive field. At each stage of this operation, the 27 cuboids in the
Rubik’s-cube-like filter are dotted with 27 components of the input volume, and all 27 products are added
together. That gives us one entry in the output, which in this simple example is a matrix.

In general, the depth of a filter (more specifically, the number of channels in a rank 3 filter: see section
6.13) matches the depth of the input volume. That way the filter can capture information from across all
the channels. (This is not always shown in figures and can be quite confusing). In this example, both the
filter and the input volume are of depth 3.7 Figure 14.5 makes the point with a variety of tensors. In each
case, the receptive field of a filter at one stage of a convolution is shown “inside” the input volume, and as
can be seen in each case, it spans the whole depth of the input.

Ignoring padding, the formula for width and height of the output tensor relative to input tensor and filter
is:

Output Width =

(
Input Width − Filter Width

Stride

)
+ 1

Output Height =

(
Input Height − Filter Height

Stride

)
+ 1

In the example shown in figures 14.3 and 14.4 the input width is 6, the filter width is 3, and the stride
(the amount it is moved for each step of a convolution) is 1 so the output width is ((6− 3)/1 + 1) = 4. Same

7This is not a necessary feature (filters with fewer channels than the input are possible and sometimes even useful), but it
is pretty standard.

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 158

Figure 14.4: The same situation as in figure 14.3 but represented using volumes. This is a better way to
think about convolutional layers, because it generalizes to the more complex situations discussed below. Try
to image the filter being passed “through” the input volume, and being dotted with its receptive field at
each stage of the operation, producing one number in the output.

Figure 14.5: Illustration of how filters usually have a depth that matches the input volume they are passed
over. Shown are the receptive fields of four filters, each of which is shown at one stage of a convolutional pass.
Alternatively, think of these panels as showing filters placed “inside” their corresponding input volumes and
moved through them.

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 159

Figure 14.6: Result of applying a filter bank of 5 3 × 3 × 3 filters to a 6 × 6 × 3 input volume with a stride
of 1 to produce an output volume that is 5× 4× 4. The output depth of 5 comes from the number of filters
in the bank; the output height and width come from the formula in the main text.

for the height.
The depth of the output shape corresponds to the number of filters we have (more on this soon), and so

far we have just considered a single filter, a single “Rubik’s cube”. So the output shape so far in our example
is 1.

So the overall shape of the output is 4 × 4, a four-by-four matrix.

14.3 Filter Banks (Representational Width)

In general, a convolutional layer will involve multiple filters, a filter bank, each of which produces a
separate feature map. Figure 14.6 illustrates the idea. Each filter produces its own output, and the results
are concatenated into a new output volume. That is, we just repeat the process discussed in figure 14.4 but
do it separately for each filter. In this example, we get a bunch of matrix outputs and concatenate them into
one output volume. That is why we said at the end of the last section that the depth of an output volume
just corresponds to the number of filters we use.

Each feature map in a filter bank learns differently via gradient descent to represent the input. Thus we
get different ways of representing the input. This generalizes the concept of the representational width
of a layer (section 1.1) to CNNs. Just as more nodes makes a regular node layer of a feed-forward network
more powerful, so too do more filters make a convolutional layer more powerful. Rather than learning just
one way to represent inputs, a bank of filters can learn multiple complementary ways to represent inputs.

The representations are not programmed in but are learned via gradient descent. This is remarkable. We
did not tell the network we want it to learn to respond to edges. All we focus on in training a network is
inputs and outputs, using a labeled data set. Training data for these networks might involve images paired
with numbers. The network is given nothing else but these training examples: if you see this picture, it’s a
2; this picture is an 8, etc. Then the network adjusts all its parameters (all the weights in its convolutional
layers), in such a way as to reduce error.

CNNs can be used to explain how different aspects of the visual systems developed. CNNs for vision

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 160

often develop edge detectors, which are learned by training rather than being programmed in. This is then
a nice model of the visual cortex, hence an example of computational neuroscience, but it’s also an old
connectionist theme. In Nettalk, phonetic categories like consonant and vowel were not programmed in but
emerged with training. With Elman’s simple recurrent networks, grammatical categories like verb and noun
were not programmed in but emerged with training. All three of these examples are discussed in chapter 15.

14.4 Multiple Convolutional Layers (Representational Depth)

Now we stack these things on top of each other, add a new kind of layer, and also use some old-school neural
network components. A deep network assembles these various pieces together.

The idea here is to combine representational width with representational depth. Recall from the
history chapter that the concept of layered feature detection goes back to Oliver Selfridge and his “pande-
monium” model, according to which seeing letters involves a hierarchy of “demons” passing messages along:
from edge demons to curve demons and finally to the output layer’s “B demon” (see figure 3.8 in chapter 3).
This allows the network to learn to identify not just simple features like edges or curves, but also features
of features, like combinations of curves which make more complex shapes, and then combinations of these
shapes. Deep networks build on this old idea, allowing us to train many-layered networks which develop
highly sophisticated feature detectors.8

There are several kinds of volume-to-volume layer in a convolutional network. One is a filter bank, as
discussed above. The other is a pooling layer, which reduces the amount of information passing through
the network without altering its basic structure (more on this shortly). Finally, we can flatten a layer, which
takes us from the convolutional layers back to a traditional feed-forward node and weight layers. Flattening
a layer involves taking all the values in a tensor and simply arranging them into a single vector. A flattened
3x3 matrix, for example, would be a vector with 9 components. See figure 14.8.

14.4.1 Pooling

Figure 14.7: Max pooling operation being applied to a matrix input, producing a smaller output that retains
the same core information. In this example the stride is 2, so it is scanned across the input in increments of
2. The maximum value in the pool is used to populate the output as the window is scanned across. Note
that there is no depth here. Pooling operations are generally applied to 2d arrays.

A pooling layer is useful when tensors start getting too big. The idea is to go from bigger to smaller
tensors, to keep things more computationally manageable. But we must do it in a way that preserves
important information. Here again we pass a window over the input and slide it left-to-right and top-to-
bottom, but instead of multiplying or dotting, we apply one of two common pooling operations:

8They also allow these features to be visualized. The results can be quite strange and even disturbing. See https://distill.
pub/2017/feature-visualization/ for some striking demonstrations.

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 161

Max pooling In each window, the maximum number is taken and written to an output matrix.

Average pooling The average value across a window is written to an output matrix.

The result of this operation is an output that is smaller than the input. These are sometimes called sub-
sampling or downsampling methods. They are valuable in that they reduce the overall size of the network
while preserving important structures.

The window passed over the input volume has a pool size, a width and height. It does not usually have
depth. We pass the pooling operation over every feature map separately. The idea comes from the last
section, where we saw that each filter learns to represent the inputs in a new way. When we downsample, we
don’t want to lose those differences. However, a new convolutional layer can learn to combine information.

However we can use a stride when we downsample. So the formula is the same as above when computing
output shape from input shape.

An example is shown in figure 14.7. The pool is 2x2 and the stride is 2, so the window is passed over the
input 2 at a time (notice that the right-most column gets left out in this case; a stride of 1 would fix that,
or some padding).

For these operations we use the same equations as above, but with pool width and height. There is no
depth because pooling does not pool across channels.

Output Width =

(
Input Width − Pool Window Width

Pool Stride

)
+ 1

Output Height =

(
Input Height − Pool Window Height

Pool Stride

)
+ 1

14.4.2 Flattening and Dense Layers

Another thing we can do, usually in the final layers of a deep CNN, is to “flatten” a volume back into a
vector. If we have a 5x5 matrix, for example, we can flatten it into an activation vector for a node layer with
25 nodes. If we have a 4x5x10 volume, this becomes the activation vector for a node layer with 200 nodes.
Note that the shape of the flattened vector is just the product of the shape values for the larger tensor.

In this way, we can convert whatever high-rank tensor we have into a vector, and thereby get back into
the world of traditional neural networks focused on in much of the book. Then we just do things as we’ve
done before. We can “couple” our complex convolutional layers into a standard feed-forward network. In
this context, weight layers are sometimes called “fully-connected” or “dense” weight layers to contrast them
with convolutional weight layers.

The overall idea is to start with layers that learn these complex features, then to compress these rep-
resentations with subsampling, and finally to present the results to the final layers, which are the kinds of
standard feedforward networks discussed in earlier chapters (for example, chapter 12).

14.5 Applications of Convolutional Networks

Convolutional neural networks originate in computational neuroscience models of vision that were developed
in the 1970s and 1980s [50]. These ideas were later used to engineer pattern recognition networks. A famous
early application was recognizing zip codes written on envelopes [86]. As convolutional networks became
mainstream based on technical improvements (big data, GPU and hardware acceleration, better architectures
and training algorithms; see section 3.7), scientists began using them, for example, to model the response
profile of neurons in the visual system (recall the discussion of figure 4.7 in chapter 4).

A significant application of CNNs in cognitive science is illustrated by the pioneering work of Yamins and
DiCarlo [169] (this work is also discussed in chapter 15). They used CNNs to study how the brain decodes
sensory information through a cascade of simple neural operations. To address this problem, they trained a
neural network to recognize objects and living beings, and then tested whether the resulting network could
predict neural responses in the visual cortex. They developed a hierarchical convolutional neural network
(HCNN) with seven layers, training it to recognize objects in a 3D environment using different 2D views.

CHAPTER 14. CONVOLUTIONAL NEURAL NETWORKS 162

Figure 14.8: Sample deep network showing convolutional layers and pooling layers. You should try to apply
the shape equations to convince yourself that the sizes make sense.

They then presented the same images to monkeys and recorded the neural activities in various sub-regions of
their visual cortex—specifically, in the order of signal processing: V1, V2, V3, V4, and the inferior temporal
cortex (IT). The results were remarkable. The HCNN’s layers achieved the best predictions of neural activity
in terms of explained variance, outperforming models specifically trained for this purpose. Moreover, the
initial layers of the HCNN more accurately predicted activations in the early visual cortex regions (V1-V4),
while the later layers excelled in predicting the activity in the IT region.

The idea is also relevant to connectionism and computational cognitive neuroscience. The significance of
these networks for psychology is still in its infancy, but early results are promising [173, 131].

Chapter 15

Internal Representations in Neural
Networks
Jeff Yoshimi

In this chapter we discuss internal representations that develop in neural networks, which is a key theme
when considering neural networks in cognitive science and “connectionism” (see section 2.4), which are the
emphases in this book. We have seen that supervised learning methods are not generally taken to be neurally
realistic in their mechanistic details, since there is no obvious way for error to be sent “backward” through
the dendrite of neurons (section 13.4).1 However, even if backprop is not realistic, it produces internal
representations that are similar to representations humans use.2

15.1 Internal Representations in Neural Networks

A representation in a neural network is a state (in the sense of “state” discussed in 10, a pattern of activation
over a set of nodes) that reliably occurs in response to some external input. For example, whatever activations
occur in a neural network when an apple is present can be thought of as being a representation of apple.
Note that a representation can be spread across many nodes, so that we have the input representation and
hidden unit representations, for example. They can also have different levels of generality, and this can be
unpacked in terms of relations of points in a state space. For example, different apples might all produce
slightly different points in state space that are near each other, and different fruits might do the same, etc,
producing a nested structure. The details of what a representation are–and whether they are even valuable
to posit–are highly contested and controversial, but we simply assume this simple definition here.3

In this chapter a range of examples of representations are considered, all of which show how, under the
pressure of gradient descent, networks trained by backprop and its variants produce psychologically realistic
internal representations. Remember this was a theme in the introduction (chapter 1). Neural networks are

1However, some circuits have been identified in the brain that may implement error-based supervised learning, e.g. climbing
fibers in the cerebellum (see chapter 4). Error based learning that is similar in some ways to backprop is also emphasized in
predictive coding accounts of the brain and predictive processing accounts of cognition. For a recent discussion of neural realism
of backprop, see [164].

2That is, even if backprop does not happen in most parts of the brain, it can still be used as a device to discover the kinds
of representations that the brain finds. How the brain develops these representations is still a mystery, but backprop let’s us
at least see what those representations might look like and what function they might serve. The idea that backprop could be
used to identify valid neural representations even if it is not biologically realistic was discussed as far back as Zipser’s work on
system identification, if not earlier. See [172].

3Doubts about representations are associated with embodied cognition, and examples, such as Braitenberg vehicles, which
show that one can have intelligent behaviors in a body-world system without there being much value to interpreting internal
states. Those who allow representations often add other components to the definition of a representation. For example, it
should be possible to activate a representation agent state absent its normal cause (representations are “detachable” rather
than “stimulus bound”), which allows for cases of mis-representation, planning in the absence of the object, and so on. It is
generally assumed that representations are used by the agent to guide its behavior. Many assume that computational processes
must transform representations into other representations, to support adaptive behaviors

163

CHAPTER 15. INTERNAL REPRESENTATIONS IN NEURAL NETWORKS 164

trained, not programmed. They develop useful abilities and, as we will see, internal representations, without
having anything programmed in. They develop these abilities and representations simply by learning to
perform tasks from data. This was a source of a great deal of excitement in the early “connectionist”
discussions of the 1980s (section 3.6). Remember from chapter 2 that connectionism corresponds to the use
of neural networks as cognitive models, which capture psychological and behavioral features of the mind,
without concern for neural realism. After the deep learning revolution (section 3.7), the idea has come back,
but with plenty of interest in neural realism as well (computational cognitive neuroscience). In general, the
idea is that neural networks trained by algorithms like backprop are relevant to psychology and neuroscience,
even if backprop itself is not neurally realistic.

This approach also builds on the visual language we have been developing for understanding the mind,
in terms of points or vectors in high dimensional spaces. In section 13.5 we saw that multilayer feed-forward
networks trained by supervised learning methods (e.g. backprop) will re-map an input space in order to
make a linearly inseparable problem separable. That was an abstract example, but it also applies to more
everyday cases. You should be able to interpret pictures like the one in figure 15.1. Points correspond to
representations. In this example, black is one category, and white is another. It is similar to the XOR
example from section 13.5. Note that the representations in the input space are not linearly separable (there
is no way to draw a line that separates the black from the white dots) but that they are separable in the
hidden unit space.

Figure 15.1: Remapping a linearly inseparable pair of clusters in the input space to a separable cluster in
the hidden unit space. In this graph, colors distinguish different output values associated with states. Each
dot corresponds to a a different state, a different representation. Input and hidden unit representations are
shown.

One way to understand how these representations work is that they involve remapping and recombining
the input space of a network in various ways. In some cases, as in the one in the figure, separate clusters
get merged at another layer. We also saw this in the the discussion of Selfridge in chapter 3, how different
layers will combine representations of earlier layers to produce complex features. The same idea also comes
up in the “stacked” layers of a deep network (chapter 14).

In this chapter a series of examples are given, some of which are elaborations of discussions in other
chapters.

CHAPTER 15. INTERNAL REPRESENTATIONS IN NEURAL NETWORKS 165

15.2 Net Talk

NETtalk (1987) [144] was a model of reading English words aloud, created by Terrence Sejnowski and Charles
Rosenberg in 1987. The network was trained to speak aloud. The network is a three layer feed-forward
network with the structure shown in figure 15.2. The input layer codes for a moving window of letters, one
of which is taken to be the current input and the rest of which provide the network with information about
neighboring letters.4 The output layer contains 26 units encoding different features of phonemes including
voicing and vowel height. The hidden layer has 80 hidden units. It was presented with written letters
in English and was trained to pronounce those letters. There are about 18,000 weights and biases in the
network. The network was trained on a corpus of 1000 common words using backprop. It took several days
to get the error to a reasonable level using their circa 1987 computer. A slightly modified version of the
network could generalize from these 1000 training samples to pronouncing 90 percent of the 20,000 words
in a standard English dictionary correctly. The network was shown to perform well with noisy input and to
gracefully degrade [144].

Here is the key point: the hidden units learned to produce a complete separation of consonants and
vowels, even though the network was not told about consonants or vowels. That is, when the central input
was a consonant, the hidden unit activation was in one part of the hidden unit space; when it was a vowel it
was in another region. Different vowels in the context of different letters produced different points but as a
group they were all near each other. Similarly for consonants. The network was not told about the difference
between vowels and consonants–it simply learned these categories while it was trained on the pronunciation
task [144]. This showed how in learning a mapping from sensory inputs to motor outputs, psychologically
meaningful categories could take form in a network’s hidden unit space.

Figure 15.2: NETtalk models converting written words to sounds, i.e. reading aloud. Each letter group has
27 nodes (not the 3 shown). When trained using backprop, it developed internal representations of vowels
and consonants, without having been told about them. The idea is schematically shown here. The current
central input is an “n”, a consonant, and so the hidden-unit state would correspond to one of the points in
the consonant cluster.

One striking feature of this example is that the sounds the networks produced could be artificially
synthesized and played back. I think this had quite an impact on the community at the time, since you
could “hear” the network learn (listen for yourself at https://www.youtube.com/watch?v=gakJlr3GecE).
Initially the network produced a babble of sounds, like a baby. But as it came to learn the task it got better
and better, until it produced somewhat fluent speech [144]. This made it quite palpable what was going
on: the network was slowly getting better, in a way that sounded vaguely like a child learning to read. I
encourage you to listen to the (somewhat creepy) process. So again, even if backprop is not neurally plausible,
it seems to be doing something like what the brain does, and it does so by developing psychologically realistic
representations of vowels and constants.

4Each letter is coded by a 29-dimensional vector (involving one-hot, one-of-29 representations of particular letters, with three
additional nodes representing punctuation and word boundaries).

https://www.youtube.com/watch?v=gakJlr3GecE

CHAPTER 15. INTERNAL REPRESENTATIONS IN NEURAL NETWORKS 166

15.3 Elman’s Prediction Networks

Another early connectionist analysis of internal representations occurred in the context of Jeff Elman’s simple
recurrent networks (see chapter 16). In a famous paper [39], Jeff Elman trained a simple recurrent network
like the one in figure 15.4 to predict the next words in a sentence.5 The input data used to train the network
consisted of thousands of sentences generated using a simple “caveman” grammar. Some sample sentences
generated by this grammar are shown in Fig. 15.3. The network predicts the next word in a sentence at
any time. For example, it predicts that the word “cat” will be followed by “chase” or “eat”. With training,
error can be reduced, but it never goes to zero, because a given word can be followed by more than one other
word. But some words are more likely than others to follow one another, and so the predictions match these
patterns. It also learns some general rules, like expecting verbs after nouns [39].6

Figure 15.3: Some of the sentences used to train the word prediction network.

After being trained to predict the next word in a simple text corpus (the same “auto-regressive” approach
to training used in transformers like GPT; see chapter 17), the network’s internal states were studied. After
training, the average response of the network to different words was tested, and it was found that similar
words were near each other in the hidden unit space. This can be seen in figure 15.4, which can be thought of
as a dimensional reduction of the hidden unit space.7 Each point in the right panel of the figure correspond
to a vector (an activation pattern) in the hidden unit space, projected to two dimension. Distances between
points are meaningful: points closer to each other in the diagram correspond to hidden unit vectors that are
closer to each other in the hidden unit space.

Gramatically and semantically similar words are near each other in the hidden unit space and they form
into a hierarchical structure. Nouns produce hidden unit representations that are similar to one another and
which form into one cluster, and similarly for verbs. Within the nouns we see further clusters for animate
vs. inanimate nouns, and there are additional categories as well.8 The striking thing about this network was
that it learned these categories without being told anything about grammar. None of the categories apparent
in its hidden unit space were directly programmed in to the network: it simply learned them in the process
of solving the input-output task it was given (compare the way Nettalk learned phonological categories when
learning to read aloud, or the way deep networks develop realistic edge detectors and other feature detectors
when trained to recognize objects).

5http://psych.colorado.edu/~kimlab/Elman1990.pdf.
6Simbrain simulations that partially replicate the results of these papers can be accessed in the script menu as

elmanPhonemes.bsh and elmanSentences.bsh.
7The original picture this was adapted from was generated by exposing the network to each word in the context of many

sentences (e.g. “eat”, “cat”), and then taking the average hidden unit activation across these exposures. The resulting vectors
are like the centers of clusters in the hidden unit space.

8There are two categories of transitive verbs because some verbs (like “chase”) are always transitive in the data (that is,
taking a direct object), while others (like “break”) were sometimes transitive, sometimes not.

http://psych.colorado.edu/~kimlab/Elman1990.pdf

CHAPTER 15. INTERNAL REPRESENTATIONS IN NEURAL NETWORKS 167

Figure 15.4: The SRN used in the word prediction task. The output layer predicts the next word (coded
as a binary vector) in a sentence. It is currently undecided between which of two words might come next.
The right top panel shows (schematically, this is not a projection of actual data) what points in the hidden
unit space corresponding to different words. The right bottom panel shows how these points cluster in to
grammatical and semantic categories. Points in the hidden unit space corresponding to similar words are
clustered nearby each other. The image on the bottom-right shows what words the dots correspond to.

The network was used to argue against the prevailing view in psycholinguistics, associated with Noam
Chomsky, that grammars are innate, rather than learned. Elman’s work showed that a network with no built-
in grammar could acquire the rudiments of a grammar from the environment. Its grammatical categories
were not “built in” to the network, but learned from the training data–the pattern of words fed to the
network.

15.4 Deep Vision Networks

So far we have focused on cases where we could visualize clusters in a hidden unit space. But there are other
ways to show that a network has developed realistic internal representations, which begin to take us from
connectionism to computational neuroscience and computational cognitive neuroscience.

As discussed in chapter 3, after the deep learning revolution, neural networks came back in fashion, and
scientists once again began turning to these as models of brain and cognition (for example, see [170, 169]).
Deep networks (chapter 14) trained using backprop to recognize numbers and other objects in images produce
activations that match neural responses in such brain areas as V1, V2, and IT, which are discussed in chapter
4. V1 and V2 are part of early visual processing, with V1 containing edge detectors. IT is part of the ventral
stream (also discussed in chapter 4) which is involved in object recognition. The model contains separate
layers corresponding to three parts of IT: an anterior, central, and posterior part. The correspondence
between layers of the deep net and parts of the brain are shown by green dashed lines in figure 15.5. The
similarity of the response of one of the last layers of the deep network and IT neural responses are shown
in figure 15.6. The model outperforms computational neuroscience models specially designed to model the
visual systems of the brain. Simply under the pressure of the gradient descent algorithm, they develop
realistic representations.

CHAPTER 15. INTERNAL REPRESENTATIONS IN NEURAL NETWORKS 168

Figure 15.5: Architecture of a deep network whose neural responses were compared with neural responses
in corresponding regions of the brain. These regions include primary and secondary visual processing areas
and several areas of the ventral stream.

Figure 15.6: Comparison of node activations in a hidden layer of the deep net (black) shown in figure 15.5,
with actual neural responses in brain area IT (red). Each point on the x-axis shows how the biological and
artificial neural network respond to a particular image. Three sample images are shown above. As can be
seen, images with a head in them produce a higher response both in the neural network and in the brain.

15.5 Other Examples

There are many other examples of psychologically and neurally realistic internal representations in artificial
neural networks, including examples based on other more realistic learning algorithms. For example, the
fixed point attractors of a Hopfield network discussed in chapter 11, the representations that develop in
competitive nets and SOM networks, and psychological elaborations of BERT (based on the same transformer
architecture as GPT) discussed in chapter 17, all have properties that shed light on human cognition.

Chapter 16

Supervised Recurrent Networks
Jeff Yoshimi

In chapter 1, we introduced the distinction between feed-forward and recurrent networks. Feed-forward
networks have historically been a focus of research activity and applications. They are easy to analyze as
function approximators or pattern associators which associate vectors with vectors, and powerful methods
like backprop (and the variants used to train deep networks) have emerged to allow them to approximate
arbitrary functions (chapter 13). They also produce interesting representations in their hidden layers. As a
result they have often dominated the conversation.

But recurrent networks have many advantages. Rather than just statically producing a single output
for each input, recurrent networks process information, producing dynamically changing patterns of activity
over time. Like the brain and mind, they are dynamical systems (chapter 10). Every network in the
human brain is recurrently connected and will produce patterns of activity when stimulated. They are also
psychologically plausible. In chapter 1, we saw that IAC networks like the Jets and Sharks network can
respond to questions by a process of spreading activation in a recurrent connectionist network. In chapter
11, we saw that recurrent networks can be trained using unsupervised methods (like the Hebb rule), and
we analyzed these systems as dynamical systems (chapter 10) in which initial conditions are partial cues
and stored memories are fixed point attractors. Whereas the attractor networks we considered tended to be
fully recurrent, here we consider recurrent networks that retain features of feed-forward networks. They are
generally layer-to-layer networks, where some of the layers are recurrently connected. Thus we retain the
idea that there is an input layer and output layer where we want to train the network to produce certain
outputs in response to certain inputs. We just add dynamics, so that the outputs can unfold automatically
even if inputs are withheld.1

These types of supervised recurrent neural networks (which are often called “RNNs”) have a long history.
Not long after backprop was discovered, people figured out how to apply it to RNNs, often by converting an
RNN into a feed-forward network using special tricks. The initial results were promising, but ran into various
technical hurdles, as we will see. However, in recent years, techniques developed to train deep feed forward
networks (chapter 14) have been adapted to recurrent networks. The results are both useful and amazing.
Any time you “google” something, or type in a partial sentence on your cell phone, these RNNs (or closely
related algorithms) are at work in the background suggesting text completions. They also automatically
classify online movies, help convert speech to text, produce automated summaries of documents, translate
between languages, and even create synthetic music or (more disturbingly) convincing fake news articles.

In 2022 Open AI introduced ChatGPT, which marked a major shift in the history of neural networks
and AI. In earlier drafts of this book, the results covered in this chapter (like generated fake news articles)
were somewhat remarkable. But after ChatGPT was released, these ideas became familiar to us all. The
transformer architecture and other innovations used to propel these ideas forward (in a way that harnesses
ideas associated with supervised recurrent networks) are discussed in chapter 17.

For the first part of this chapter we develop the basic theory of supervised recurrent networks, starting

1Other approaches to recurrent networks (reservoir networks like echo state machines), that are more geared towards com-
putational neuroscience, are discussed in chapter 20.

169

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 170

with an overview of types of applications, and then discuss an important historical class of model: the simple
recurrent network or SRN. This model basically uses some tricks which make it possible to apply classical
backprop techniques to recurrent networks. We then describe backprop through time, which also uses tricks
to make it possible to use backprop to train networks to produce specific dynamical behaviors in reaction to
inputs. These sections give us a sense of how supervised learning can be applied to recurrent networks.2

16.1 Types of Supervised Recurrent Networks

To start, let’s think about ways these kinds of network can be useful. Figure 16.1 shows some ways you can
use a recurrent network trained using supervised methods like backprop through time.3:

Vector-to-sequence (one to many): Train a network to produce a sequence of desired input vectors from
a single input vector. Example: train a network to produce a song or speech from an initial prompt.

Sequence-to-vector (many to one): Train a network to respond in a specific way after a sequence of input
vectors has been presented. Example: train a network to classify a video clip. The video input runs
for a while and at the end a classification is output.

Sequence-to-sequence (many to many): Train a network to respond to a sequence of inputs with a
sequence of outputs. Example: train a network to translate a sequence of sentences in English with a
sequence of sentences in German.

Even though this is framed in terms of single vectors and sequences of vectors, the boundaries between these
cases can be fuzzy: a sequence-to-vector model, for example, might really involve a small sequence of vectors
as input (like a brief text prompt) and a much longer sequence of output vectors. Thus, one might also think
of these as involving: a long response to a short input; a short response to a long input; and equal-length
responses. (Interestingly, large language models like ChatGPT use a more purely feedforward approach,
taking a large set of input words and producing a single predicted next word; see chapter 17.)

Figure 16.1: Different types of sequence learning possible with backprop through time.

These ideas have links to dynamical systems theory (chapter 10). In the single input vector (one to
many) case we are training the network to produce an orbit in the output space relative to an initial
condition triggered by the input.4 Variations on this architecture and this method can be used to train a

2Supervised recurrent networks have been especially useful in the domain of natural language processing (NLP), where words
and other linguistic items are represented as vectors, via “word embeddings” (see chapter 8). Note that for much of this chapter
I refer to processing of words in a sentence, since that is a simple and easy case to think about, though sentences can be parsed
into other types of linguistic units as well, such as parts of words. In machine learning these linguistic units are more generally
referred to as “tokens” and the process of breaking a document up into these tokens is known as “tokenization.”

3In these examples absent inputs are just zero vectors.
4In the case of sequential inputs we are working with a kind of open dynamical system, where the system is perturbed by

external inputs even after initial conditions are set. See [70].

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 171

network to produce a whole phase portrait, a whole collection of orbits or trajectories in a state space. In
fact, there are theorems which show that recurrent networks can in principle produce any trajectory of any
dynamical system [51].5

There are clearly many applications here. Again, many are in the domain of natural language: chat bots,
sentiment analysis, text summarization, speech recognition, machine translations. But there are other appli-
cations: time series forecasting, video classification, video captioning, music generation, music recognition,
action recognition (identifying objects in a video or determining what is being done), etc. As we will see,
the technology is rapidly changing in this area, since it has so many applications, but cognitive science and
neuroscience are paying close attention, and this material continues to be highly relevant to understanding
the human mind and brain.

16.2 Simple Recurrent Networks

To begin to understand how these networks work, and how they were used in cognitive science, we can
consider an old class of model, the simple recurrent network or SRN, which was developed in part by
Jeff Elman [39], a member the original PDP research group (in fact, they are also sometimes called “Elman
networks”). SRNs are important because (1) they show what the basic approach to training recurrent
networks is, and (2) because they were used by connectionists to demonstrate how grammars could be
learned by a network.

The structure of an SRN is shown in Fig. 16.2. It is basically a standard 3-layer feed-forward network
trained using backpropagation, with some special machinery for processing temporal context. The special
machinery is the “last hidden state” portion of the input layer, which is always set to the hidden layer
activation vector of last time step (in the first time step it is usually just set to the zero vector).6 It is
a “copy-back” of the hidden layer. Otherwise it is like another part of the input layer, fully connected to
the hidden layer. Thus at any time the full input to the network is the current input, plus some temporal
context. It’s a bit like someone saying “Good times!”. At the moment you hear them say “times!” you have
some memory of them having just said “Good”. You hear “times!” in the context of “Good”. This allows
you to distinguish “good times” from “bad times” from “crazy times”, etc.7,8

SRNs are also trained in a special way. They use a training dataset, like the ones discussed in chapter 12,
and shown below. But unlike a normal training dataset, the rows of an SRN’s dataset must be presented in
a specific temporal order. As each input vector is presented to the network, the output is computed based
on that input vector, and on the hidden layer vector from the last time step. Then backprop is used in the
usual way to update all the weights of the network. Table 16.1 shows an example of a training set for a
recurrent network. To emphasize the importance of temporal order, a column for time has been added.

The dataset trains an SRN on a one-step prediction problem, which is often what SRNs are used for. In
machine learning contexts this type of training is also common; there they are referred to as “auto-regression”
tasks. The network learns to predict the next item in a sequence based on what items have occurred before.
A nice thing about this kind of task is that there is no need for “labeled data.” Any string of words or tokens
is enough to train a network, since the target at any time is just the next item in a sequence.

5Even more generally a recurrent network can reproduce any Turing Machine, and hence any computational system. They are
“Turing Complete”; see [64] section 15.5; also see http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf. These
results are comparable to the universal approximation theorem for feed-forward networks noted in chapter 13

6As McClelland says,“The beauty of the SRN is its simplicity. In fact, it is really just a three-layer, feed-forward back
propagation network. The only proviso is that one of the two parts of the input to the network is the pattern of activation over the
network’s own hidden units at the previous time step” https://web.stanford.edu/group/pdplab/pdphandbook/handbookch8.

html.
7This idea occurs in philosophy in the work of Edmund Husserl and others who claimed that human experience essen-

tially involves “time consciousness”, which in turn includes an awareness of what has just-passed and what is about to come
(and note that SRNs are usually trained to predict one step in the future). See https://plato.stanford.edu/entries/

consciousness-temporal/.
8But note it’s not the past input that is remembered, it’s the past hidden state. That hidden state is influenced by the

past input, and earlier hidden states. Thus there is a recursive relationship here that allows the temporal influence to extend
arbitrarily far back in the past, though the influence is strongest in the recent past. As an analogy, consider a giant pot of soup
to which new ingredients are added each day. At any time it tastes most like the current ingredients, but there always hints of
past ingredients in there, with the more recent ingredients more prominent than ingredients added in the distant past.

http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf
 https://web.stanford.edu/group/pdplab/pdphandbook/handbookch8.html
 https://web.stanford.edu/group/pdplab/pdphandbook/handbookch8.html
https://plato.stanford.edu/entries/consciousness-temporal/
https://plato.stanford.edu/entries/consciousness-temporal/

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 172

Figure 16.2: A simple recurrent network.

time inputs targets
1 1 0 0 0 1 0
2 0 1 0 0 0 1
3 0 0 1 0 1 0
4 0 1 0 1 0 0
5 1 0 0 0 1 0

Table 16.1: The user provided training set for an SRN. We say what outputs we want to occur, in what
order, given a time-ordered sequence of inputs. Note there is a puzzle: the state (0, 1, 0) occurs twice, with
two different outputs, and thus seems to pose a problem for training.

In the toy example being considered here, the network is being trained on a “bouncing one” pattern. For
example, if we enter (1, 0, 0), the SRN should predict that (0, 1, 0) comes next. But notice that the vector
(0, 1, 0) is ambiguous. It will predict different outputs depending on when we present it. It predicts (1, 0, 0)
after (0, 0, 1), but (0, 0, 1) after (1, 0, 0). How can the network do this? The answer is: by using the context
layer. The last hidden state after seeing (1, 0, 0) is different then it is after seeing (0, 0, 1). This allows the
network to differentiate the same input, (0, 1, 0), in different temporal contexts.

In fact, behind the scenes, what is happening is that the network uses regular backprop, but with a
special training set. The real training set, “under the hood”, is shown in table 16.2. The network learns to
associate inputs with outputs, in the context of specific hidden layer states. Notice that the last hidden unit
state at time 2 is different from the last hidden unit state at time 4. This allows the network to solve the
problem.

time inputs last hidden targets
1 1 0 0 .5 .5 .5 .5 .5 0 1 0
2 0 1 0 0.9 0.9 0.9 0.2 0.9 0 0 1
3 0 0 1 0.4 0.8 0.8 0.9 -0.2 0 1 0
4 0 1 0 0.9 0.9 0.9 -0.2 0.9 1 0 0
5 1 0 0 0.9 0.3 0.3 0.9 -0.5 0 1 0

Table 16.2: The actual training set used “under the hood” by the SRN. The inputs are external inputs
together with the last hidden state of the network, which reflects recurrent dynamic processing. This allows
the network to disambiguate the (0, 1, 0), which is different in its two temporal contexts, where the last
hidden state is different.

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 173

We can train these networks on arbitrarily long sequences, like all the sentences in a document, or all
the images in a movie, or all the sounds in a musical piece, assuming of course that the sentences, images,
or sounds have been converted into vectors (see the discussion of feature encoding in chapter 7). As we will
see, the hidden layer can then be analyzed for the patterns it discovers and the sequences of patterns it goes
through in time. In psychology, SRNs have been especially useful at studying the development of linguistic
categories in networks that learn to predict the next sound in a speech stream, or the next word in a passage
of text.

16.3 Backpropagation Through Time

A more general framework for training recurrent networks (which can be thought of as generalizing the SRN
to include arbitrarily many time steps in the past) is by using “backpropagation through time” [163].9 As
with the SRN, we start with a simple three-layer feed-forward network, but instead of a “copy back” layer,
we use a recurrent layer of weights from the hidden layer back to itself. Like the SRN, we have a training
dataset that involves time ordered input-target pairs. In order to train the network, we “unroll” the network
so that all the inputs can be put in the network at the same time. It’s as if you take the original network,
copy and paste it a bunch of times (once for each row of your training set), and then replace the recurrent
weights from the hidden layer back to itself with lateral weights between the copy-pasted hidden layers (see
figure 16.3).

Figure 16.3: Schematic of backprop through time. The actual network that we are training is on the left: a
feed-forward network with a recurrent weight layer in the middle. The unrolled network is on the right. This
network can learn a sequence of three input-target pairs. We train the unrolled network to produce target
values in response to current inputs and to previous hidden layer states. When training is done, the changes
to the weight matrices (the arrows) are added together and so we have “rolled the network back up” to the
network on the left.

Each of the unrolled networks is then responsible for a specific moment in time. To train the network, we
put together all the inputs in the dataset into one long input, one for each of the unrolled networks. Then
we train the whole unrolled network to produce the corresponding sequence of outputs.10 But you are not
just training the usual weights from input-to-hidden layer and from hidden-to-output layer. You are also
training the hidden-to-hidden weights in the middle, that laterally connect the hidden layers of the unrolled
network to each other. Note that the unrolled network is really just a feed-forward network, with some extra
lateral weights. So this is ultimately a trick to use feed-forward methods on a recurrent network! When
we are done training this big unrolled network, we add up all the input-to-hidden, hidden-to-hidden, and
hidden-to-output weight matrices, which is like collapsing the unrolled network back to down the original

9There are other methods of training recurrent networks, eg. real time recurrent learning [167], and “dynamic reconstruction”
(Haykin, 14.13) [64].

10This involves exposing the network to each of the inputs in a sequence from left to right, so that hidden layer activations are
updated in a specified order. This hidden layer activations provide contextual disambiguation in the same way the copy-back
later does in a SRN. The resulting sequence of outputs is compared to the target output sequence, producing an error, which
is backpropogated.

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 174

network, the one on the left side of figure 16.3. If we present the network with a sequence of input vectors
from the training set, in sequence, it should produce the same sequence of target vectors. And, it should
generalize, producing similar sequences of outputs to those in the target set, given a similar sequence of
inputs.

16.4 Recurrent Networks and Language Generation

Once various technical issues with training recurrent networks were resolved as part of the deep learning
revolution, people started to realize their power. They were particularly good at generating convincing
text. Ultimately even better approaches to generate data were discovered, in particular the transformer
architecture (chapter 17), but at the time it was quite amazing.

In a now-classic blog post, Andrej Karpathy describes some of these applications.11 For example, he
trained a neural network on a bunch of Shakespeare12 (with words coded as vectors, of course) and then ran
the RNN, which produced it’s own version of Shakespeare [74]. Here is a sample:

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand

In another example Karpathy trained a network to speak like Tolstoy using an English Translation of
War and Peace. Remember, these are just networks’ trained using variations on backprop. So he would
train the network to produce sequences of statements that were similar to sequences of statements in Tolstoy.
As the network learns using gradient descent, the outputs seem more and more like Tolstoy. Recall how we
could track Nettalk learning to speak at different stages of training, like a creepy baby (section 15). Here we
can do the same thing with the network, observing get better and better at speaking in the voice of Tolstoy.
Here is some network output after iteration 100:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne ’nhthnee e plia tklrgd t o
idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns ln

The network doesn’t even really have the concept of a word yet. By iteration 700 it has words, kind of:

Aftair fall unsuch that the hall for Prince Velzonski’s that me of her hearly, and behs to so arwage
fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

Finally, after a few thousand iterations, it’s beginning to sound like a Russian novel:

“Why do what that day,” replied Natasha, and wishing to himself the fact the princess, Princess
Mary was easier, fed in had oftened him. Pierre asking his soul came to the packs and drove up
his father-in-law women.

Karpathy got these supervised recurrent networks to do other cool things: for example, he generated a
fake wikipedia page, fake source code, and a fake math paper [74]. A fragment from the artificially generated
mathematics paper is shown in Fig. 16.4. These techniques have even been used to generate a fake script
for a movie, which was then actually produced!13

11http://karpathy.github.io/2015/05/21/rnn-effectiveness/. Note that Karpathy makes use of LSTMs; see below.
12The data is here: http://cs.stanford.edu/people/karpathy/char-rnn/shakespear.txt.
13The move is called “Sunspring”, and can be viewed here: https://www.youtube.com/watch?v=LY7x2Ihqjmc. The opening

shows a list of all the other movie scripts that were used to train the network to produce its script [113]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://cs.stanford.edu/people/karpathy/char-rnn/shakespear.txt
https://www.youtube.com/watch?v=LY7x2Ihqjmc

CHAPTER 16. SUPERVISED RECURRENT NETWORKS 175

Figure 16.4: Fragment of “fake math” generated by a recurrent network trained on real math.

16.5 Limitations of Supervised Recurrent Networks

Karpathy’s blog post was written in 2015. In 2020, GPT was released, and in 2022, ChatGPT was publicly
released, and thus began what we are calling the “Age of Generative AI” (section 3.8), which we are currently
living through. These architectures grew out of efforts to overcome limitations of supervised recurrent
networks like the ones we’ve described.

We’ve seen that recurrent connections can provide a network with context information (for example with
the copy-back layer of a SRN). What the network sees at time t is an external input and some trace of what
happened in the past. Input plus context is enough for the network to learn to produce meaningful temporal
sequences. The main problem SRNs and similar architectures run into is that they favor recent context over
earlier context. But it is often important to be sensitive to information much earlier in a temporal sequence
and as a result supervised recurrent networks like the ones reviewed above have a hard time capturing larger
temporal structures, like the plot of a story or the overall theme of a musical performance.

There are also technical problems, like the the problem of vanishing gradients: as error is backpropagated
through the weights of a network (section 13.4), the amount weights are changed further back in time gets
smaller and smaller. Another problem is that this type of network does not lend itself to high performance
parallel computing architectures like GPUs. This can be dealt with using some tricks, like truncating how
far back the “window” of backprop goes (“truncated” backprop through time), but this only takes us so far.

One approach to these problems is to use nodes with more complex activations functions (see chapter
5). Two such functions are “long-short-term memories” (LSTMs) [140, 116] and “gated recurrent units”
(GRUs).14 These functions—which are like compound activation functions containing several others as
parts—allow activations to be gated or turned off altogether. When placed in a recurrent network trained
using gradient descent, they can learn to pass information far along a temporal sequence, “jumping” over
intermediate nodes, in a way that avoids the problem of vanishing gradients.

The ultimate way to address these problems was to in a sense drop recurrent networks altogether, but
to include a sense of context in the internal representations developed by a feed-forward network. That is
what transformer networks like GPT do.

14See http://colah.github.io/posts/2015-08-Understanding-LSTMs.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Chapter 17

Transformer Architectures and LLMs
Jeff Yoshimi, Pierre Beckmann, Polyphony Bruna, Tim Meyer

As discussed in the history section 3.8, we have entered a new stage in the history of neural networks, what
we are calling the “age of generative AI”, which should be familiar to you via such tools as ChatGPT. In their
most familiar form, a large language model (LLM) based on the transformer architecture generates
text responses to text inputs by repeatedly predicting the next word or token in a sequence.1 They are
trained on large datasets of everyday text, like text from the internet, which is easily available. As noted
in section 3.8, it is common to equate “transformer” with “LLM”, but the two concepts are distinct. The
transformer is the neural network architecture, while an LLM is just any model of language generation that
is based on a large dataset. An LLM can be built out of something besides a transformer, and transformers
can be used on things besides language. For example, some state of the art image classification models
are now transformer-based, and OpenAI has released an impressive video generation model—Sora, which
also runs on a transformer architecture. However, in this chapter we focus on transformer-based models of
text generation like GPT.2 We will sometimes refer simply to “LLMs” by which we mean transformer-based
LLMs.3

Earlier efforts at text generation and natural language processing used supervised recurrent networks
(chapter 16), which are, as we saw, in various ways limited. In particular, they can only process a small
amount of context, and suffer the vanishing gradient problem. The transformer architecture is basically a
complex feed-forward network that can be “aware” of multiple kinds of relationships between arbitrarily far-
flung parts of an input stream. Because it is a feed-forward network, many of the older techniques covered
in this book can be applied to the architecture. In particular, all the lessons of the deep learning revolution
(section 3.7) apply here, and indeed, transformers are many-layered deep networks (chapter 14) that make
good use of both representational width and representational depth. They can be trained on large
datasets using highly optimized parallel hardware. Like all the other networks discussed in this book, they
are not just useful as engineered tools, but are highly relevant both to neuroscience and cognitive science,
and seem to develop meaningful internal representations.

We start with preliminary discussion of how transformer-based LLMs are trained using highly available
text data, and how a special recursive trick can be used to make a feed-forward network that only predicts next
words still produce meaningful conversational outputs. We then discuss how the transformer architecture
itself works. Finally we consider how LLMs are utilized and evaluated and the relevance of these models to

1The concept of token is introduced in chapter 8. Following practice introduced there we will vacillate between “token”,
which is more accurate (since it encompasses punctuation, word parts, and other non-word entities) and “word”, which is more
intuitive.

2There are many other models in this class. As of this writing (June 2024), this includes the open Ai GPT series: GPT,
GPT-2, GPT-3, GPT-4, and GPT-4o. It also includes BERT (Google’s first LLM, which is now out-dated), Gemini (Bard),
several Claude models (Anthropic; semi open-source), Llama, LLama2 and LLama3 (Meta), and Alpaca (Stanford; open source).
Most of these models can only be accessed online but some can be downloaded and run locally, further fine-tuned, etc. A list
of LLMs ranked by how well they chat is here: https://chat.lmsys.org/?leaderboard.

3There are numerous high quality online resources for learning about LLMs. An excellent visual introduction is at this
website: https://poloclub.github.io/transformer-explainer/. Three blue one brown is always excellent on visual intuition
and he has a youtube video. For a more technical walk through on building an LLM from scratch see Karpathy’s tutorial.

176

https://chat.lmsys.org/?leaderboard
https://poloclub.github.io/transformer-explainer/
https://www.youtube.com/watch?v=wjZofJX0v4M&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=kCc8FmEb1nY

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 177

cognitive science, neuroscience and other areas.
Changes in this area are rapid, and the relevance of these areas to cognitive science is only now being

studied, so updates to this chapter are expected.

17.1 Learning to speak Internetese

In section 16.4, we saw how recurrent neural networks trained on example text can learn to speak in a way that
reflects the statistical properties of the training data. A network trained on Shakespeare will start to speak
fake Shakespeare, a network trained on real math can generate fake math, etc. Large language models using
transformers do the same thing, they just do it much better. The architecture is better suited to the task, as
we will see, and they can use much larger datasets (hence “large” being added in front of “language model”).
In fact, the training set for GPT-3 was not all of Shakespeare, or just a bunch of math papers, but rather a
large subset of the entire internet, which included all of Wikipedia, a few compilations of books, and a web-
scraped archive of the internet called “common crawl” (https://en.wikipedia.org/wiki/Common_Crawl).
See figure 17.1. Similar datasets continue to be used on LLMs, so if you’ve ever written anything online,
there is a decent chance it is part of the training data for one of these models.

Since all of Shakespeare is on the internet, and discussions of every topic of human endeavor from physics
to history, and plenty of gossip and randomness about popular culture and everything else, these models can
talk about all of these things. They can statistically generalize from their training data, which consists of a
large part of the internet, which in turn encompasses many of the books and recorded knowledge of human
history. In a sense, these models learn to speak “internetese”.

Figure 17.1: The datasets used to train GPT-3. The data mostly consists of data scraped from the internet,
but lots of books and all of Wikipedia are also included.

The results are impressive. The texts these models produce are no longer obviously fake in the way
the examples from section 16.4 were. In fact, in some cases they arguably pass the Turing Test, a long-
standing test for artificial general intelligence, answering questions and producing convincing text in response
to prompts. Whether LLMs really pass the test is a matter of ongoing controversy. This is discussed further
in section 17.5.4.

17.2 Training Using Next-Word Prediction

Recall from chapter 7 that a labeled dataset consists of inputs and targets. As noted there, this kind of
labeled data can be hard to obtain. We might have lots of pictures of people but not know the names or
identities of the people in the pictures, or lots of pictures of cats and dogs but not whether a given picture
is of a cat or dog. Creating targets for a large dataset is labor-intensive, requiring humans to manually label
each picture.

LLMs like GPT use a special method (sometimes known as auto-regression) to take any passage of text
and convert it into a labeled data set that can be used to train a neural network. The trick is, roughly, to
treat a sequence of text tokens (minus the last token in the sequence) as an input, and to treat the final
token in the sequence as a target. More specifically we use vector embeddings of the tokens as inputs and
targets. The great thing about this method is that it can be used to generate a labeled dataset from any text
document. No longer do we have this difficulty of finding labeled data. Just take any old piece of written

https://en.wikipedia.org/wiki/Common_Crawl

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 178

text, and you’ve already got multiple training examples, just by taking concatenated vector embeddings of
different sequences of tokens as input and vector embeddings of the next tokens after those sequences as
targets.

For example, consider this block of text adapted from the Wikipedia page for UC Merced:

The University of California, Merced is a public land-grant research university in Merced, Cali-
fornia. It is one of the ten campuses in the University of California (UC) system. Established in
2005, Merced is the newest campus within the UC system.

From this, we can create a bunch of training examples, a list of input / target pairs. We might use “The
University of” as an input, and then “California” as a target. We simply associate each token in the input
with a vector using a word embedding (chapter 8). The target is also vector encoded, but in a different
way: as a one-hot encoding over all possible tokens, where all entries in the vector are 0 except the actual
next token (we discuss this further in section 17.4.2). In this way we can build a table of input-target vector
pairs, which we can use to train a feed-forward neural network. For a sense of the idea, see figure 17.3.4

Figure 17.2: How text sequences can be converted into training datasets using the method of auto-regression.
A set of tokens is converted into vectors using a token embedding (the vectors shown are arbitrary, just to
illustrate the idea), and by concatenating these vectors we get an input vector. The next token in the
sequence is encoded as a target using a one-hot encoding over all tokens (in this case there are seven tokens:
six words and the question mark)

Note that the word embedding in this example is 4-dimensional (each token is associated with an array
of 4 numbers, a vector in a 4d space). In real LLMs, this “embedding dimension” is quite large, for example
over 12,000 for GPT-3 (see figure 17.8).

In practice, a sequence of tokens is converted into a matrix where each row corresponds to the token
embedding for one token. This matrix of shape (sequence size, embedding dimension) is the actual input
to the neural network. So unlike earlier, simpler neural networks, which transformed vectors to vectors via
weight matrices, here we are transforming stacks of vectors by matrices.5 Figure 17.3 illustrates the idea,
and introduces some useful terminology. Notice the “you” occurs twice in the stack, and is associated with
the same row vector.

There is a key conceptual model that occurs here that is useful to fix in mind, since it’s key to understand-
ing LLMs. We can think about the context window as a stack of tokens converted into a stack of vectors,
where the vectors correspond to embeddings of the tokens in a vector space that then get transformed as
they travel through the network. Thus the repeated “you” will change its representation as it is processed.

4Note that normally a word like “University” would be split into multiple tokens, but we are keeping things simple here.
Some information on tokenizers is in chapter 8.

5What is actually fed to the transformer is a batch of these token embedding matrixes, that is a rank-3 tensor with shape
(batch size, sequence size, embedding dimension); see section 6.13).

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 179

Figure 17.3: The context window is associated with a matrix that can be thought of as a stack of vectors,
one for each token. Notice that “you” occurs twice and is associated with the same vector.

This may seem confusing at first; don’t the numbers get all jumbled up when we matrix multiply? But recall
the discussion of matrix multiplication and the “row processing” perspective (section 6.11), where we can
view think of a matrix multiplication as taking a stack of N row vectors on the left, multiplying them by a
matrix produces on the right, to produce another stack of N row vectors, each of which has been separately
processed by the matrix on the right. As a result, we can track the transformations a token’s representation
goes through as it makes its way through a network. We will come back to this idea below when we discuss
the “residual stream”.

17.3 How Text is Generated from a Feed-Forward Network

One confusing thing about figure 17.3 is that we go from a large input covering a whole set of tokens to
a single token as output. So great, we can predict single words. But how do we go from single words to
generating long text outputs, or having conversations? In fact, in hearing about generative AI as “next word
prediction” machines, you may have sometimes wondered how such complicated things can happen when all
they models do is predict next words.

The answer is by using what we can call the “recursion trick”. This trick allows us to take a feed-
forward network that only predicts next words and use it to produce streams of text output. In fact, it’s
remarkably simple. We feed a network a set of inputs corresponding to string of text, and it produces an
output corresponding to the predicted next token. That output is then appended to the previous input,
and this longer input is now fed back to the network. This process is repeated to produce a stream of text
outputs. This technique can be used to generate unending sequences of text from any prompt.6 The prompt
is our input, and then answers are generated using the recursion trick. Text will continue to be generated

6Notice that this is a kind of recurrence, and arguably this makes LLMs used in this way a kind of recurrent network.
Outputs are fed back in as part of inputs. However, the outputs are text that must be converted back to text inputs, which are
then vector encoded. In fact, recurrent networks were originally used for text processing, as we saw in chapter 16, but it turns
out that fancy feedforward networks used in this way outperform them. (In those cases, a vector representation of each token
in the sequence would be presented separately: “hello”, “how”, “are”, “you”, and “?”).

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 180

until a special end-of-sequence token is reached.7

So this gets us one response. But then you type a new question. That entire question is appended to the
entire past conversation including both what you and GPT have said so far.

Suppose, for example, we want to ask a network “hello how are you?” The input to the network is the
whole sentence {“hello”, “how”, “are”, “you”, “?”}. Let’s not worry about the vector embeddings, and just
see the general idea, as shown in figure 17.4. Notice that the initial prompt is the initial input, but then the
prompt and the first word of the response are used as the next input, and this process can be repeated until
a response is written out.

Figure 17.4: A schematic view of how “conversations” are generated from feed-forward networks in systems
like ChatGPT. The output at one time is concatenated to the input at that time, and that is then used as
the input at the next time step. This process is repeated to generate a full response.

Of course, as we keep doing this, the inputs to the network get larger and larger, and there must be some
limit to how far we can go, right? The answer is yes. Any LLM specifies a fixed-length context window.
At the start of a session, this window is mostly zeros, except for the initial prompt. In a dialog, the prompts
from a person and the responses from the LLM are both included until the context window is filled. Thus,
if the context window is large enough, whole series of back and forth conversations can be processed. All
the prompts and responses up until the current point are part of the input, and then the LLM uses the
recursion trick to generate new responses that are sensitive to everything that’s been discussed thus far.
When the system runs out of slots in its context window, items are simply removed from the start of the
context window (from a computer science standpoint, this is a queue). This is intuitive in figures 17.3 and
17.4. These context windows can be remarkably large. GPT-3 has a context window of about 2000 tokens
or about 6 pages of text, and early versions of GPT-4 had context windows of 32,000 tokens or about 72
pages of text.

Here is the idea in more detail, in a way that begins to give a sense of how the architecture works, for a
highly simplified example. The outputs are softmax, discussed below (section 17.4.2 and in chapter 5), with
one node for each token in a very small vocabulary. The network takes the stack of token embeddings as
input and produces a probability distribution over these tokens as output. See figure 17.5.

17.4 The Transformer Architecture

We have thus far covered high-level features of how LLMs work, but have treated the transformer as a black
box. The time has come to open the box. How does the fancy feed-forward network at the heart of these
models work? Its power rests on a few novel architectural innovations, which combine representational width

7An important step forward with ChatGPT was its ability to mimic human conversation or “chat”. This was achieved using
specialized training techniques, particularly Reinforcement Learning from Human Feedback (RLHF). RLHF uses reinforcement
learning with human input–such as when ChatGPT asks users to rank responses–to refine its conversational abilities. This
human feedback is used to develop a reward model that is used to update the network’s parameters, incentivizing it to produce
a more human-like cadence of responses.

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 181

Figure 17.5: A first look at the process of a conversation unfolding through a network, showing the stack
of word embeddings associated with the context window, the transformer blocks, and the softmax output.
Note that the most active output is associated with a token that is added to the context window on the next
time step. Shown are two time steps. On the left the network has output a response of “Good” in response
to the query, and that output is placed in the context window using the recursion trick.

and representational depth with a special form of context awareness. All the things we’ve seen about other
neural networks apply here. It is a kind of deep feed-forward network, which uses a huge amount of training
data. But the key innovation is that within each “layer” it can develop many forms of context representation,
which relate all the tokens in a context window to each other.

17.4.1 Blocks

The transformer architecture [157] contains layers or “blocks”, which are specialized to process the large
context windows that are fed to the network as input. With training, they learn to find long-range depen-
dencies between different parts of a context window. Recall that the context window includes an original
prompt, its own response to that prompt, etc.; it includes the entire exchange you’ve had with GPT up to
the current point, so long as it fits in the context window. Each block combines an attention head and a
standard feed forward network or MLP (see figure 17.6). We maintain the “row processing” perspective of
section 6.11 throughout the discussion. That is, we forget about batch processing, and focus on a stack of
vectors, each corresponding to one token in the context window. First this stack is processed through the
attention heads, then through the MLP.

The attention head is where the contextual awareness occurs. Each token representation in the entire
stack is compared to every other one. In our simple example, “hello” is compared to “how”, “are”, “you”,
and also to itself. These comparisons occur using three matrices: K, Q, and V, which stand for key, query,
and value. First the input to the block, a stack of vectors representing tokens, is multiplied by the key and
query matrices to produce two new stacks of vectors. These stacks of keys and queries are then multiplied
(using a dot product) in all possible combinations and then normalized to produce a context representation
(see the discussion of vector comparisons and vector comparison matrices in section 6.5). We can think about
this as a kind of table lookup, where the query asks a kind of question, and the key is a potential answer8

8For thinking about the key and query vectors, K and Q, see https://e2eml.school/transformers.html, which develops
the idea that keys and queries are being used in a table lookup procedures, as the terms suggest. The queries are source terms,
the keys target terms. The key scans across past-tokens (due to the triangular mask that is used) and selects information useful

https://e2eml.school/transformers.html

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 182

The resulting matrix reflects the degree to which the different token representations are facing in the same
or different directions in the embedding space. These entries also called self-attention scores. For example,
in the sentence “I went to the bank”, there will be a score for bank in relation to “the”, ”to” , etc.9 This self-
attention matrix is then itself used to process the stack of vectors produced by multiplying the inputs by the
value matrix V.10 In this last step all the token representations are enriched by contextual information. So
the output of the attention head is a stack of token representations that reflects dependencies between them.
All tokens, no matter how far apart they are, can still influence each other. The self-attention mechanism
learns what relations between words in a context window are important; in a sense it learns what to focus
on (hence “self attention”).

Figure 17.6: (Left) One transformer block, with a single head. The matrix (or tensor) of activations being
fed to the block is processed through by three matrices K, Q, and V. Generally speaking these are down
projections that reduce the size of the data. K and Q are used to generate a self-attention matrix. The
input to the block is processed through V and then through the self attention matrix, and then through
an up projection (not shown) so it is back to the same size as the input. At that point there is a skip
projection from the input, and the resulting activations are passed through a standard feed-forward network
or “MLP” which typically involves a hidden layer that is larger than the input (hence up projection and
down projection). From the input to the output of the MLP there is another skip connection. (Right) The
residual stream representation of the network, where we think of activations as passing up along the straight
line, which the attention head and the MLP read from and write to.

Once processed through the attention head, the activations are processed by a feed-forward network, an
MLP, whose hidden layers is typically higher dimensional than the input. The MLP plays an important role.
It contains more weights than the rest of the block, and can be used to recall facts and other information to
enrich the token representations.

There are skip connections before and after the attention head and the MLP, and as a result we can think
of the transformer block as reading from and writing to a single residual stream of activations in a latent
space [38, 105] whose dimension is the embedding dimension (recall the discussion in section 6.12).11 This

for predicting.
9Only backwards relationships are examined, a “triangular mask” is applied to the matrix to 0 out the upper triangular, so

that token representations are not compared to future tokens because that would make the word prediction task too easy. This
is visible in the Simbrain representation.

10For thinking about the value vector V, see Tom Yeh’s https://www.byhand.ai/p/8-can-you-calculate-a-transformer,
which focuses on the attention matrix and the ”attention weighted features” that occur when activations are passed through it
(that is, the output of the attention head).

11The concept of a residual is that of an error in statistics, how far data lies from a regression curve, for example. The idea

https://www.byhand.ai/p/8-can-you-calculate-a-transformer

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 183

perspective is shown in the right panel of 17.6, and it’s a crucial perspective, because it means that there is
a single space we can focus on. As the stack of token representations moves upwards through the stream, it
is enriched with context information by attention heads and by other forms of stored representation by the
MLPs.12 Thus the token representations are continually enriched. Just look back through this document.
The word “the” is used multiple times even in this paragraph. If it were being processed by an LLM, each
“the” representation would slowly acquire different context as it worked its way through the transformer.
All of this is crucial in chapter 18 on mechanistic interpretability.

This is the basic architecture, but there is more. There is both representational width and representational
depth.

First, we consider representational width, which corresponds here to the fact that there are multiple
attention heads, it is a “multi-head” attention structure. This allows the network to pay attention to different
features of the token representations coming to it through the residual stream (see figure 17.7). Each head
carries out all the operations described above. Note that K, Q, and V are typically down projections, they
take the input stream and place it into a smaller space, which is then used to construct smaller attention
matrices.13 For example, if the embedding dimension were 9, it might be projected into three separate
3-dimensional heads.14 The outputs of all the heads are then up-projected back to the size of the residual
stream and added together. As a result of this multi-head attention, the network can learn multiple ways
to compare words in the sentence to each other, a bit like how a convolutional network (section 14.1)
develops multiple filters to analyze an image, what we have also called representational width. The results
of these different attention heads are combined and as a result each layer of a transformer network involves
a sophisticated representation of the sentence that represents multiple types of inter-word dependency.

Now we take a lesson from deep networks, and stack many of these transformer blocks on top of each
other (k times in figure 17.7), to produce increasingly sophisticated representations. This is representational
depth, and the idea was already suggested above in the initial discussion of the residual stream. As token
representations move through the layers of attention heads and MLPs, they acquire more and more context
information, the vectors corresponding to them in the latent space point in slightly different directions which
reflect all this accrual of meaning.15 Recall that with deep networks for vision, we get features, features
of features, features of these features, etc. whose activations match neural response properties of different
layers of the human visual system. This builds on the old idea of the Pandemonium model (section 3.3),
which involved (at successive layers): edge detectors, detectors for combinations of edges, detectors for
combinations of these combinations (e.g. fragments of letters), and ultimately letter detectors. In a similar
way, the successive layers of a transformer model of language correspond to increasingly complex features
of the input stream, including syntactic categories, semantic properties, and far more complex features as
well.16

The whole thing is trained using gradient descent and supervised learning (chapter 12). It’s the same ideas
as with a simple feed-forward network trained using backprop, but with many more components trained.
Items in bold in the figures above are trained: the word embedding, the key, query, and value matrices for
each head in each block, and the normal weights and biases of the feed-forward networks. The error signals
used in gradient descent are being back-propagated through a lot of stuff here!

here is that rather than transforming information completely from one layer to the next, that the layers just produce “deltas”
on a single stream of information flowing through the stream, they operate on these “residual” errors, as it were. The idea
originates in deep networks.

12Since we can think of these as reads and writes, this also means that we can think in a more algorithmic or symbolic way
about what is happening in the network, with representations being shuffled and move around and even being erased, in a nod
to older views of classical AI (we return to this topic in the discussion of philosophy at the end of this chapter).

13The dimensionality of each head is often the embedding dimension divided by the number of heads, so that when the
outputs are concatenated, the original dimension is restored. In figure 17.8, the number of inputs to each head, dhead, is equal
or almost equal to the embedding dimension dmodel divided by the number of heads nheads.

14Thus, for each head, the K, Q, and V matrices would typically have dimensions 3 × 9, where 9 corresponds to the input
dimension from the previous layer, and 3 refers to the reduced dimensionality for each head (note that for efficiency, these
matrices are often combined into a single larger matrix.)

15The Three blue one brown video linked at the start of the chapter has useful visualizations of this process.
16The extent to which activation patterns correspond to syntactic or semantic features is measured using post-hoc interpre-

tation techniques such as probing. As with so many other neural network features, these were not “programmed in” by the
engineers, but are emergent from the network after training, and are studied and described by scientists after the fact.

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 184

Figure 17.7: Schematic of the transformer architecture. Multiple blocks are stacked, capturing representa-
tional depth, as in a CNN. Each block contains a multi-head attention structure, where each head learns
to represent inputs to the block in a different way. This captures representational width. The outputs of
the multiple heads are combined in a standard feed-forward network. Other structures handling residual
connections, and adding and norming activations, are not shown. As above, bolded items contain trainable
parameters that are updated via gradient descent.

17.4.2 Softmax Outputs

The first step in a transformer is to embed inputs, as we’ve seen. The next step is to transform these inputs
using a series of blocks that are wide (thanks to multiple heads) and deep (thanks to multiple blocks). When
all the processing is done, the last step is to un-embed the outputs, converting vectors back to tokens.

In figure 17.3 we saw that while inputs use a word embedding, outputs are probability distributions over
the whole vocabulary, and targets are one-hot encodings consisting of all zeros and a single “hot” number
(the number 1) corresponding to the predicted next word (on one-hot encodings, see section 7.3). When
target data are binary one-hot encoded labels, the task given a network is a classification task (section 12.3).
Thus transformers are technically classifiers, which classify input texts according to what word is likely to
occur next. Classification can here be seen as serving as a proxy task. Our actual task is to predict a set of
probabilities over next tokens. The output of an LLM is a set of probabilities over next tokens.17

The output of an LLM is often a softmax layer with around 50,000 outputs, which indicate how probable
all the tokens are given the input (all the prompts and responses in the context window so far). The softmax
temperature parameter can be used here (see section 5.5): higher temperatures will make the outputs more
random or “creative”. See figure 17.5 for how this might look for our simple example, where the output
vocabulary just contains 7 tokens.

17The interesting thing is that by trying to perfectly classify next tokens (an impossible task), we end up with good probabil-
ities, which is exactly we’re after. Here is a way to think of it. If the model was trained to 100% accuracy on the classification
task, then it would always generate the same sentences from the same prompts (because it would assign one unique token to
the current input). But then it could not generate new instances of text.

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 185

Once we have a probability distribution over tokens, we select one of the most probable next tokens and
that becomes the output. This is usually done by sampling from among the top n most probable next tokens.
Thus the final softmax layer does the opposite of what the embedding layer does. Rather than converting
from tokens to activations, it converts from activations to tokens, and is thus a “de-embedding” layer.

17.4.3 Parameters and hyperparameters

By way of summarizing, consider the parameters and hyperparameters associated with a transformer-
based LLM. Recall that parameters are primarily weights and biases (i.e values that are updated during
training) while hyper-parameters are values that determine the structure of a network but that are not
updated during training.

Figure 17.8 shows the number of parameters for a range of GPT-3 subvarieties as nparams. The released
version of GPT-3 had 175 billion weights and biases. By comparison, our xor 2-2-1 network had 3 biases
and 6 weights, or 9 parameters. A standard convolutional neural network might have millions of parameters.
So this is just massively larger. Not surprisingly, these networks have gotten even larger. GPT-4 has about
1.76 trillion parameters.18 Figure 17.8 also shows the values of several hyperparameters such as number
of layers (nlayers), corresponding to representational depth, and number of heads (nheads), corresponding to
representational width.19 The size of the token embedding dmodel is also shown, as are the learning rate and
batch size. Notice that these are all concepts we have seen in one way or another (often directly) in earlier
chapters. All the same ideas are being used but on a larger scale.

Figure 17.8: Number of parameters and values for some of the hyperparameters used in training different
versions of GPT-3.

The size of the context window is another hyperparameter not shown in the figure. According to IBM
research, “when ChatGPT made its debut nearly two years ago, its window maxed out at 4,000 tokens. If
your conversation went over the 3,000-word chat-interface limit, the chatbot was likely to hallucinate and
veer off-topic. Today, the standard is 32,000 tokens, with the industry shifting to 128,000 tokens, which is
about the length of a 250-page book. IBM just open-sourced on Hugging Face two Granite models with a
128,000-token window, and more are on their way.”20

17.5 LLMs and the Cognitive Sciences

As with many architectures discussed in this book, transformer-based LLMs are major objects of scientific
interest, even if they were developed for engineering applications (see chapter 2). They are interesting for
the obvious reason that they are in some sense the best cognitive models ever produced. They have arguably
passed the Turing Test, producing grammatically and semantically coherent language and responding to

18It takes large server banks that consume huge amounts of energy to run these models, and so there is a thread of research
attempting to achieve similar performance with smaller models, some of which can be run on a personal computer. For example,
Gemma2B achieves performance similar to GPT 3.5 with 2 billion parameter. See https://developers.googleblog.com/en/

smaller-safer-more-transparent-advancing-responsible-ai-with-gemma/.
19Notice that the size of the heads, dhead is equal or almost equal to dmodel × nheads (some mismatches are allowed).
20https://research.ibm.com/blog/larger-context-window.

https://developers.googleblog.com/en/smaller-safer-more-transparent-advancing-responsible-ai-with-gemma/
https://developers.googleblog.com/en/smaller-safer-more-transparent-advancing-responsible-ai-with-gemma/
https://research.ibm.com/blog/larger-context-window

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 186

questions in a flexible and often creative ways.21 But it is not known exactly how they do it. This creates
an interesting situation. Despite the fact that humans built LLMs, humans still do not understand exactly
how they work. It’s the same strange situation first mentioned in chapter 2 and taken up further in chapter
18. It’s as if we discovered something new in nature and are trying to determine how it works, so we have
to reverse engineer it.22

As a result of these features of LLMs, a huge ecosystem of analysis has grown up around them, and
they are intensively studied across all of the cognitive sciences.23 In some respects, LLMs offer an empirical
proof that many human behaviors can emerge in connectionist networks trained on next-token prediction.
However, these systems require training on quantities of textual data that surpass what an individual human
is exposed to in their lifetime, and LLMs can fail in surprising ways on simple planning and reasoning tasks
[111]. Which of their circuits if any are like the circuits used by the human brain to produce intelligent
behavior. They are being considered as models of cognition, linguistic processing, and neural processing.
They are also being intensively scrutinized by the philosophical community. Here again, the landscape is
rapidly changing, and this section will have to be frequently updated.

17.5.1 Stochastic Parrot or Genuine Intelligence?

At a high-level, the main debate about LLMs is this: are they just regurgitating what they were trained on,
like a stochastic parrot, or are they genuinely intelligent? This is sometimes framed as a distinction between
recall and generalization. The recall side says these models store and extract the data they were trained on.
The generalization side says they can go beyond that.

On the recall side of this debate, some argue that LLMs do little more than compress and then recall
information contained in their training data [10, 28]. A popular version of this argument as applied to LLM’s
is due to Emily Bender and colleagues [10], in which it is claimed that current LLMs are “stochastic parrots”
that capture nothing more than mere co-occurrence probabilities (in fact, the title of the paper includes a
Parrot emoji). If this is true, then LLMs do not offer a cognitive model of human intelligence, but may still
be useful as a sort of repository for population-level statistical trends in human behavior. As they say “an
LM is a system for haphazardly stitching together sequences of linguistic forms it has observed in its vast
training data, according to probabilistic information about how they combine, but without any reference to
meaning: a stochastic parrot” (p. 617). Another metaphor is that of a blurry JPEG of the internet [28].
Take the whole internet, and compress it in the way a JPEG compresses an image. On this conception,
LLMs are just giant statistical models, that can compress information but that fail to be able to anything
original.

On the generalization side of the debate, it is argued that LLMs dynamically assemble functions in
response to prompts that generalize from patterns in their training data [75], offering a computational model
of core properties of human cognition. On this view, LLMs are actual cognitive models, even if they weren’t
initially designed to be. They are not just regurgitating their training data but are doing the same kind of
computations humans do: soft-assembling information in response to situations and out of their complicated
circuitry producing emergent genuine intelligence.

One way to make the debate vivid is via what Bender and colleagues call the “Octopus test” [11] (see figure
17.9), which goes like this: two English-speaking castaways communicate via telegraph across islands. A
super-intelligent octopus intercepts their messages, learns the statistical patterns of the messages going back
and forth, and, “feeling lonely”, inserts itself into the conversation. This scenario is used to argue that, like
the octopus, LLMs may produce seemingly meaningful outputs based solely on statistical patterns, without
true understanding of language or the concepts they appear to discuss. They argue that the imaginary

21A review of the literature on whether they pass the Turing Test is [72]. We are planning to add more information on this
topic in a future release.

22In fact, this happened to some extent before with neural networks. Something similar happened with CNN’s (chapter 14),
but with CNN’s it was much easier to run simulations on a personal computer, and the interpretability issues were easier to
make progress on.BERT was developed at Google to meet engineering needs, but soon drew the interest of psychologists and
linguists given its surprising effectiveness in language tasks. In fact it gave rise to the field of “BERTology” [132].

23The influence also goes in the opposite direction. It’s not just cognitive science studying what LLMs do, cognitive science
also contributes to research on LLMs. For example, the LLM benchmark BIG-BENCH draws on cognitive science to test the
ability of LLMs to understand and combine concepts, including novel or invented concepts [151]. Such benchmarks are not only
used to assess LLM performance but also to refine and guide their development.

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 187

octopus would pass the test for simple chatbot-like interactions, but that it would fail in responding to
strange situations involving words referring to objects the octopus has never perceived.

Figure 17.9: The octopus test. In the upper panel the octopus is observing the information being passed back
and forth. At a certain point the octopus intercepts the wire and starts passing statistically similar messages
to the person on the first island. This is shown in the lower panel. The communication is convincing, and
the person on the left does not realize what has happened (the poor person on the right is just out of luck
at this point). It has been argued that the octopus would not understand the information it passed along,
even if it was convincing to the human. Moreover, it has been argued that the octopus would fail to produce
convincing text in certain novel situations.

17.5.2 LLMs and Behavioral Sciences

As noted above, BERT, an early transformer model, attracted interest from linguists and psychologists. De-
spite being trained without any explicit knowledge of grammar, it learned many aspects of syntax, including
subject-verb agreement, reflexive pronouns, and hierarchical sentence structure [53, 92, 154]. For example,
it has been shown that BERT’s attention heads often focus on specific linguistic roles, such as the direct
objects of verbs or the determiners of nouns [32]. Some attention heads display broad attention across entire
sentences, while others are highly focused, suggesting a complex, multi-faceted approach to language under-
standing within the model. This is similar to earlier work on SRN’s (see chapter 16), but with the difference
that much longer-range dependencies in a stream could be captured [98], thanks to attention heads which
represent pairwise relationships between all tokens in a context window.

Chatbots powered by LLMs have become target “subjects” of a variety of psychological experiments to
assess the scope of their resemblance to humans. We can take the same exact stimuli used for humans and
use them for a chatbot. In fact, some have argued that LLMs may be used as a substitute for human data
collection in future psychological research [3, 35].

Much of this work has related LLM behavior to known psycholinguistic effects. For example, LLMs
appear to reproduce human word rating norms on variables such as age of acquisition, arousal, concreteness,
dominance, familiarity, gender association, imageability, and valence [155, 75]. Humans and LLMs rated

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 188

words across all of the categories in a remarkably similar ways. Figure 17.10 which shows these correlations
on a list of 390 words, with some correlations approaching .9, which is very strong. As an example, here is
how valence is defined in such an experiment:

a measure of value or worth. A word is NEGATIVE if it represents something considered bad,
whereas a word is POSITIVE if it represents something considered good. Rate the valence of
each of the following words on a continuous scale from 1.0 (VERY NEGATIVE) to 9.0 (VERY
POSITIVE), with the midpoint representing NEUTRAL.

Here are some examples of mean ratings on valence by humans and several LLMs, for two words:

“affair”
Human: 2.438
GPT-3.5: 3.98
GPT-4: 4.05
GPT-4o: 3.1
Gemini1.5:3.8

“bead”
Human: 5.394
GPT-3.5: 5.35
GPT-4: 5.3
GPT-4o: 5.38
Gemini 1.5:5.4

Figure 17.10: Correlations of mean ratings for 11 psycholinguistic variables between LLMs (x-axis) and
humans (y-axis) on a list of 390 words. Overall, LLMs closely match human performance on word ratings
across variables, with some correlations reaching 0.9 or higher. Correlations are weakest for arousal, domi-
nance, and humorousness, which the authors argue is because these variables are more ambiguous in meaning
(consistent with greater variability in human ratings, not shown). In later analyses, the authors show that
the correspondence between human and LLM ratings on these variables tracks human inter-rater reliability:
The more agreement in human ratings (i.e., lower variability), the better LLMs are able to match human
behavior. .

Additionally, Cai et al. (2023) reported that LLMs appear to mimic human linguistic biases, such as
sound-shape association (e.g., the “kiki-bouba” effect, in which arbitrary shapes are associated with specific
nonsense words; for example “kiki” is mapped to a more spikey structure and “bouba” to a rounder one),
sound-gender association (e.g., novel names ending in a vowel compared to a consonant tend to be judged as
more feminine sounding), semantic and syntactic priming, and semantic illusion (e.g., noticing fewer errors

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 189

in sentences containing incongruous words when those words are semantically close to congruous words),
amongst others.

Some differences also emerge in this type of study. For example, LLMs don’t seem to exhibit a preference
for efficient language use, such as selecting the shorter of two synonymous words (e.g., “math” versus “math-
ematics”). Similarly, LLMs did not appear to resolve syntactic ambiguity in accordance with efficient signal
use, seen in humans. For example, humans have a tendency to interpret ambiguous modifying expressions
such as “with the leash” in “walk the dog with the leash” as identifying a type of dog rather than describing
an instrument for walking when multiple dogs are present. Modifying expressions to resolve referential am-
biguity (such as when there is more than one dog that may be walked) is one property of efficient language
use [48]. However, LLMs tested did not showed sensitivity to the presence of referential ambiguity when
interpreting syntactic ambiguity. This discrepancy may indicate that LLMs are not currently governed by
processes related to the energy constraints that drive efficient cognitive solutions in biological systems, which
would offer a coherent difference between artificial and natural intelligences.

LLMs have also been studied in relation to conceptual schemes in humans. Abdou et al. show that
language models can encode perceptual color relationships, even though they have never “seen” colors the
way sighted humans have (but have only read about color relationship in texts) [1]. This finding mirrors
behavioral evidence that semantic judgments about color terms are highly similar between congenitally
blind and sighted individuals [95, 137]. Indeed, blind individuals have been shown to possess rich visual
knowledge, indicating that some aspects of ’embodied’ experiences are available in the structure and use of
language [76, 93]. Liétard et al. find that LLMs can predict relative geographic distances between cities
[91]. Christiansen et al. report that LLMs organize concepts in ways that correlate with human conceptual
structures [30]. These findings collectively suggest that LLM representations are not “empty symbols” as in
traditional computer programs (see the discussion in 1.2.3). Instead, they are content-rich and structured
similarly to human mental representations.

Finally we note a lively debate about the extent to which LLMs are capable of reasoning. Melanie
Mitchell studied early transformer architectures (and deep nets before them) and argued that they are not
as intelligent as they appear, in light of their tendency to fail at reasoning tasks, especially those that require
generalization and transfer of knowledge (compare the discussion of stochastic parrots and the octopus
test above). An example that went viral around 2023 was asking LLMs to “count the number of Rs in
’strawberry”’. At the time, they often failed at such purely symbolic tasks. Mitchell, discussing these
failures, concluded that “Giving machines common sense will require imbuing them with the very basic
‘core,’ perhaps innate, knowledge that human infants possess about space, time, causality, and the nature of
inanimate objects and other living agents, the ability to abstract from particulars to general concepts, and
to make analogies from prior experience. No one yet knows how to capture such knowledge or abilities in
machines” [108].

Subsequently transformer based architectures like GTP-4 performed at high levels in standardized tests
like the LSAT, the SAT, and the Bar (though not quite as well at writing). See figure 17.11. Multiple studies
also showed that LLMs could perform as well as or better than humans on analogical problems, including
problems developed by Mitchell herself [161]. Mitchell has responded, noting that transformers perform well
on simple analogies but that performance declines sharply on more complex analogies [89]. The topic remains
hot as of 2025. In June 2025 a group at Apple published a paper whose title begins with“The Illusion of
Thinking” [147], which claims that large reasoning modelings like LLMs “ face a complete accuracy collapse
beyond certain complexities”. The charge was met days later by a post by Anthropic called “The illusion
of the illusion of thinking” [118], which claimed that the Apple group’s work “primarily reflect experimental
design limitations rather than fundamental reasoning failures” and that when controlling for these errors
that LLMs can succeed on reasoning tasks reported as failures in [147]. So the issue is hot and ongoing.

17.5.3 LLMs and Neuroscience

We have seen in earlier sections that neuroscientists have used convolutional neural networks (CNNs) to
predict brain activity (section 14.5). In a similar way, researchers are now leveraging transformer-LLMs to
understand how our brains process language.

For example, several groups [123, 141, 27] have explored the relationship between internal activation
patterns in LLMs as they process a text and patterns of human brain activity elicited by the same human

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 190

Figure 17.11: Some of the performance results on standardized tests noted in the GPT-4 technical report.
Note the high performance on most tests shown, but middling performance on the Writing GRE.

Figure 17.12: LLMs perform comparably to humans on a variety of analogical reasoning tasks. The Letter
problems are based on problems developed by Hofstadter and Mitchell.

beings when they process the same text. The approach taken is generally this:

1. A text (such as The Little Prince) is selected.

2. The text is fed into an LLM.

3. The LLM’s internal activations are recorded and time-locked to each token (word or punctuation mark)
in the text.

4. A human subject reads or listens to the same text while their brain activity is recorded using EEG,
MEG, or fMRI.

5. The brain activity is aligned (time-locked) to the same tokens.

6. A linear model is trained to predict the human brain responses from the LLM activations.

7. The model is tested on held-out data (e.g., new passages of text) to assess how well the LLM-derived
features predict neural activity. That is, given a new text, can the LLM predict what will occur in
some part of the human brain?

Because this procedure can be applied across different layers of LLM and different brain regions, it can
be used to produce a set of prediction scores indicating which parts of the model correspond best to which
areas of the brain. These results effectively map layers or the LLM to the brain’s language network.

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 191

Transformers often outperform other computational models in predicting brain activity—a result echoing
earlier work showing that deep CNNs predict activity in the visual system with higher accuracy than prior
theoretical models of the visual system do (section 14.5). Some studies suggest that even untrained models
can predict neural activity moderately well, suggesting that the architecture itself captures aspects of lin-
guistic processing, though performance improves substantially with training. “For example, across the three
datasets, untrained GPT2-xl achieves an average predictivity of ∼ 51%, only ∼ 20% lower than the trained
network. A similar trend is observed across models: Training generally improves brain scores, on average by
53%” [141]. Figure 17.13 shows some of the areas where activity is most strongly predicted by LLMs.

Figure 17.13: Highlighted regions correspond to areas whose brain activity (voxel activity in fMRI) that are
best predicted by the internal activation patterns of an LLM.

Prediction tends to be strongest for activations in the middle layers of LLMS [27], but the details remain
unclear (see [141], figure 2C), and this work will probably be best pursued along side work in mechanistic
interpretability (chapter 18), where studies suggest that attention heads located early in the model’s forward
pass tend to deal with syntactic features, composing these into semantic features in the middle of the forward
pass, and finally refocusing on syntax at the end of the pass.

17.5.4 LLMs and Philosophy

LLMs have had a wide-ranging and ongoing impact on philosophical discussions of AI, given that they have
done many of the things long-time AI skeptics doubted would ever be possible in a machine, like speak fluent
language and arguably pass the Turing Test.24 That this was done by a neural networks has been seen
by many as a decisive win for connectionism relative to the old debate about whether neural networks or
symbolic architectures are best-suited to modeling cognition (see section 3.3), but that has not settled the
issue. We here review a smattering of topics to give a sense of the debates most relevant to the topic of the
book: neural networks and cognitive science.

First, there is an old debate about whether passing the Turing Test sufficient to conclude that a system
really understands anything. Doubts about the ability of machines to understand language have a long
history, and there is a whole class of arguments to the effect that a system can’t understand the meanings
of words just by manipulating symbols, or by transmitting information. These are sometimes called unusual
realization arguments, given that these arguments

ask us to imagine people carrying out simple operations on bit streams, connectionist-like com-
putations on activations patterns, or the control operations of the central processing unit of a
computer. For example, Dneprov asks us to imagine a stadium full of people who pass 0’s and
1’s to one another on the basis of instructions announced over a loudspeaker. We can further
imagine that this stadium is linked to an input-output device that enables it to pass the Turing
test. We can then ask ourselves: do we really think this stadium full of people has consciousness
or genuine understanding? [115]

Some have argued (often based on the “stochastic parrot” intuitions canvassed above) that these argu-
ments apply to LLMs. They can pass the Turing Test by manipulating information in a clever way–here
based on a statistical aggregation of the internet–but they don’t truly understand anything, and they are

24An extensive and helpful review of philosophical issues through 2024 is [104, 105]. Multiple new papers on topics relating
to AI appear each week at philPapers.org so the areas is quite active.

philPapers.org

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 192

certainly not conscious [60]. In fact, some LLMs have themselves claimed that the Chinese Room argument
(a famous form of the unusual realization argument) applies to them [33]!

However, others argue that LLMs do understand the meaning of the words they produce. Relying on
findings presented above, Sogaard [150] argues that the representations LLMs use are grounded (that is, are
meaningful) in virtue of their alignment with human neural, cognitive, and perceptual spaces. These are
not like the empty symbols passed along in Dneprov’s stadium or in other “unusual realization arguments.”
Here, the LLM manipulates representations that have internal structures aligned with those of the human
mind.25

Another long-standing argument against machine intelligence due to Hubert Dreyfus [36] is that no
computer or neural network could ever have truly human capacities, because they were not raised in the
real world and can only parrot back what they were programmed or trained to say, at best with moderate
abilities to generalize beyond that (Bender and Keller’s argument develop this idea with respect to LLMs
and argue these considerations are why the octopus would pass the test). However, humans with their
embodied human existence develop an intuitive sense of the full context of the lived world. To show this,
one of the authors (Yoshimi), who has regularly taught Dreyfus’ argument for many years, would have the
class ask strange or unusual questions to AI systems and chatbots of earlier years, like “What would happen
if a penguin were to juggle alligators.” The systems invariably struggled to say anything meaningful (though
some chatbots did pretty well using tricks, like pretending to be a teenager saying “lol who cares”). But
current iterations of LLMs like ChatGPT do just fine with such questions, suggesting that the old problem
of background knowledge may have been resolved.

The recent success of LLMs in producing coherent and intelligent-seeming linguistic behavior has also
revived the old debate about whether neural networks or symbolic architectures are best-suited to modeling
cognition (see section 3.3 as well as [77]). In 2023 Noam Chomsky (representing the symbolic approach)
wrote a New York Times guest essay titled “The False Promise of ChatGPT” in which he claimed that
statistical approaches to language like neural networks “will degrade our science and debase our ethics by
incorporating into our technology a fundamentally flawed conception of language and knowledge” [29]. The
essay echoes many decades of research on his part arguing against statistical learning theory and behaviorist
or empiricists approaches to language.

The old debate went something like this. According to the symbolic approach, stimuli activate symbols
which can be re-arranged and composed in arbitrary ways, in accordance with innate rules (like the rules of
grammar). This innate capacity for combination and recombination is what gives human beings their vast,
indefinite expressive power. Neural networks only learn statistical associations, and are thus brittle. They
cannot combine and recombine symbols to produce arbitrary responses to queries and to think in arbitrarily
complex ways. As Chomsky says, echoing the stochastic parrot and octopus arguments, Chat GPT is “a
lumbering statistical engine for pattern matching, gorging on hundreds of terabytes of data and extrapolating
the most likely conversational response or most probable answer to a scientific question.”

The immediate response from a neural network enthusiast will be to simply point to the ability of
LLMs to answer questions in arbitrary ways. It seems like an existence proof against the old symbolic AI
arguments: we have a system based on statistics that does what supporters of the symbolic approach claim
it cannot do. More principled responses look to the internal structure of these systems and how they work.
Some have noted that systems based on word embeddings can in fact produce the kinds of compositional
patterns emphasized in symbolic AI. Much of this work is now being carried out in the field of mechanistic
interpretability (chapter ??∗).

A natural response from the classical symbolic perspective is to note that humans learn a language based
on a relatively limited input stream. Toddlers can talk pretty well based on far less data than a trained LLM
is exposed to. The fact that humans can learn language based on limited input data is sometimes used as
a “poverty of the stimulus” argument against the kind of empiricist approach assumed by an LLM. LLMs
are not trained the way humans are; they must be trained on the entire internet–“gorging on hundreds of
terabytes of data”. This is not at all realistic. Some have begun to pursue these arguments systematically,
and suggested that when language models are trained on naturalistically realistic data, they are limited in
the ways Chomsky and others predicted they should be [82].

Finally, another response is to say that neural networks are in fact processing language symbolically.

25A philosophical argument that LLMs could, with some additions relating to agency, produce genuine understanding, is in
[17].

CHAPTER 17. TRANSFORMER ARCHITECTURES AND LLMS 193

If mechanistic interpretability succeeds, it will have succeeded in finding what the classical approach said
would be there all along: a symbolic system, reading and writing representations to the residual stream. We
are not yet aware of someone making this argument in print, but it’s just a matter of time.26

Across these examples, much of the real nitty gritty concerns what is going on inside the guts of an LLM.
Clearly they are doing something more intelligent than consulting a giant lookup table.27 So what is going
inside an LLM? Are the symbols grounded? Is there a world model in there? Is a compositional symbol
system lurking? We hope we have provided some guidance to thinking about what happens in the guts of
these machines with all the explanations and visualizations (and pointers to other tools and visualizations)
in this chapter, and we also note that the topic is itself being actively pursued in the area of mechanistic
interpretability, discussed in chapter 18.

26Consider these quotes from [38]: “Both the attention and MLP layers each “read” their input from the residual stream
(by performing a linear projection), and then “writ” their result to the residual stream by adding a linear projection back
in... We generally think of the residual stream as a communication channel, since it doesn’t do any processing itself and all
layers communicate through it... some MLP neurons and attention heads may perform a kind of “memory management” role,
clearing residual stream dimensions set by other layers by reading in information and writing out the negative version... The
fundamental action of attention heads is moving information. They read information from the residual stream of one token,
and write it to the residual stream of another token.”

27This idea relates to another old thought experiment in philsophy of cognitive science, the “blockhead example” (due to Ned
Block), according to which a system that behaved intelligently just by consulting such a table would not actually be considered
intelligent [104].

Chapter 18

Mechanistic Interpretability
David Udell, Jeff Yoshimi

The modern transformer architecture (chapter 17), trained at sufficient scale, can learn to speak English
(as well as every other natural language, assuming sufficient training data). In this way, LLMs outperform
almost the entire animal kingdom. Only humans and LLMs speak English, as opposed to just learning some
noun associations (though the topic is hotly contested; see the discussion in section 17.5.1). This naturally
raises the question: how do the LLMs do it? What is special about these systems, that differentiates them
from all prior programs and all non-human animals, and groups them together with us humans?

In this chapter we discuss mechanistic interpretability (sometimes abbreviated as “mechinterp”),
a field of study within machine learning that attempts to explain how trained artificial neural networks
work. Its aim “is to discover simple algorithmic patterns, motifs, or frameworks that can subsequently be
applied to larger and more complex models... by conceptualizing the operation of transformers in a new but
mathematically equivalent way, [the field is] able to make sense of these small models and gain significant
understanding of how they operate internally.”[38].1

Note that this goes well beyond earlier work simply looking at regions of an activation space or finding
what feature a hidden layer is responding to (we discuss this distinction further in section 18.1). The goal
here is to fully understand the algorithms, the entire processes or stepwise procedures, that are unfolding
inside a model when the model produces meaningful responses. A prominent practitioner in the field puts
it as follows:

What is mechanistic interpretability? The core hypothesis of the field is that models learn human
comprehensible algorithms. They contain structure that makes sense and can be understood. But
they have no incentive to make this legible to us. They learn this structure because it is useful
for getting loss on predicting the next token, and it is our job to learn how to reverse engineer it
and how to make it legible”.2

Research in mechanistic interpretability thus makes incessant use of this family of terms–it hunts after
“programs”, “algorithms”, or “circuits” that are taken to be what is learned by a model. These terms not
formally defined for the whole field. Rather, as mentioned above, mechanistic interpretability relies on the
intuitive idea that the steps that occur in a neural network are potentially understandable. Formalized
notions of these concepts are then proposed as parts of research projects in the field; these precisified notions
often center on the contextual representations of tokens as they are processed along a residual stream (on
the concept of a residual stream see section ??∗).3

It is a remarkable property of many neural network architectures, showcased especially in contemporary
LLMs, that we are able to train these networks up into capable systems without fully understanding them.

1This has already become something of a classic text in mechanistic interpretability. We encourage the reader to have a
look at the opening pages. The paper builds on an earlier thread at distll.pub, https://transformer-circuits.pub/2021/
framework/index.html.

2From https://youtu.be/veT2VI4vHyU.
3The use of these terms raise deep issues in philosophy of cognitive science that are discussed at the end of chapter 17. We

are agnostic about the exact interpretation here.

194

distll.pub
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://youtu.be/veT2VI4vHyU

CHAPTER 18. MECHANISTIC INTERPRETABILITY 195

Without first fully understanding English semanics, we nonetheless have successfully created neural networks
that speak English! (Compare the discussion of neural network analysis in chapter 2 and of analysis of
transformers in section 17.5). Mechanistic interpretation is thus sometimes described as a form of reverse
engineering, responding to this un-understood acomplishment. An influential paper on the topic (which we
encourage the reader to read, at least the opening pages of) explicitly describes mechanistic interpretability
as

attempting to reverse engineer the detailed computations performed by transformers, similar to
how a programmer might try to reverse engineer complicated binaries into human-readable source
code. If this were possible, it could potentially provide a more systematic approach to explaining
current safety problems, identifying new ones, and perhaps even anticipating the safety problems
of powerful future models that have not yet been built.[38]

From the standpoint of cognitive science and neuroscience, it is like we have a brain that we have com-
plete, transparent access to. One might think of mechanistic interpretability as “speedrunning” neuroscience.
Despite their inscrutability, the “programs” executed by a transformer are far easier to scientifically inves-
tigate than animal models or human brains are. (Hence the intensive interest in LLMs in cognitive science;
see section 17.5).

18.1 Historical Context

In prior chapters we have seen that the analysis of activation spaces of neural networks has been key to
their interpretation as cognitive models, a history which extends back to the PDP revolution of the 1980s
and 1990s (see chapter 3). The common theme in this literature is that even if neural networks are in many
ways biologically unrealistic (for example, the brain does not seem to use backprop), they can still be used
to identify processing ideas and motifs that are demonstrably similar to those found in human brains [172].
In chapter 15 in particular, we saw how a range of network-internal representations could be meaningfully
interpreted. In SRNs, vowels and consonants correspond to regions of the hidden unit spaces of a network
trained to predict the next phonemes; grammatical and semantic categories correspond to regions of hidden
unit space when the SRN is trained to predict the next word in a sequence. We also saw in multiple chapters
that hidden unit activations of trained neural networks often provide a strong match to neural activations
in the brain, often better than the best prior models (see section 15.4).

In the word embedding chapter (section 8.3.4) we saw that it is common to represent tokens by vectors,
where the geometric relationships between these vectors are meaningful (e.g., the vector difference between
the embeddings for “king” and “queen” corresponds to the vector subspace for gender). That pattern of
structured semantic relationships is essentially what we see at play again in the activation spaces of (the vastly
larger) trained transformers. Other threads of research in recent years have concerned feature visualization
in deep networks, using methods such as saliency maps and activation maximization, to understand what
the internal layers of a deep network are responding to in their inputs.

As previously mentioned, the basic concepts in mechanistic interpretability–“programs” and “circuits”
and, recently, “features”–have been left undefined, retaining for the whole field only their intuitive meanings.
This is because figuring out the correct formalization of these concepts is in great part the challenge of mech-
anistic interpretability. Historically, for example, one obvious definition for “circuit” was graph subnetwork:
the idea here would be that a circuit in a model is the minimal set of units and edges that reconstructs a
behavior and only that behavior. Behind this definition is the implicit assumption that individual neurons
in a model sensibly correspond to our concepts–the idea of a single neuron in a network representing the
concept of “grandma” and feeding that to later neurons, e.g. (If this monosemanticity assumption weren’t
true, then subnetworks would not automatically be human-interpretable.) Empirical circuit discovery re-
search using this notion of a circuit, though, has not been terribly successful at decomposing models into
constituent meaningful subnetworks, partially because individual neurons empirically aren’t monoseman-
tic. These gotchas are frequent in mechanistic interpretability research, and careful, empirically informed
theorizing is demanded.

Mechanistic interpretability is largely pursued in support of value alignment (see chapter 2). Simply
making LLMs more capable has chiefly been achieved through raw computational scaling. For the purpose

CHAPTER 18. MECHANISTIC INTERPRETABILITY 196

of value alignment, though, the understanding-centric approach of mechanistic interpretability is seen as
crucially important. To take a cartoon example, if we could identify a “friendliness circuit,” more activation
could be directly pumped into it to make the model friendlier. Or, alternatively, the ability to fully examine
an LLMs world model and make sure there is nothing nefarious in it would also secure guarantees about
model behavior.

Echoing another theme of this book, even if the field is focused on engineering goals like value alignment,
the results of this field are separately of immense value to cognitive science. These results are providing
a whole new set of conceptual tools for thinking about how information is processed in the natural neural
networks of the brain.

18.2 The Toolbox of Mechanistic Interpretability

18.2.1 Linear Probes

In animal brains, electrode probes are used to “eavesdrop” on neuronal electrical activity. The analogous
data collection task for a trained transformer is far easier. In the transformer context, a probe is a trained
auxiliary model that tries to determine whether a given concept is encoded at a particular sublayer or
activation space of a neural network [4, 9]. Figure 18.1 illustrates.

Figure 18.1: A probe for an LLM can be inserted anywhere in the forward pass, trained, and then used to
classify activations there.

We harvest activations from somewhere in a transformer, often from somewhere in its residual stream,
and then train an auxiliary classification model on those activations to determine feature presence or absence.
For the training set of activations we had collected, we knew whether the feature was present or absent, and
use that knowledge to fix our training labels. It is now hoped that this “probe” model will successfully
generalize its classifications to any future model activations. (Probes are specifically “linear” probes when
their classifications are a nearly linear function of the activations, but any classifier architecture is possible.)
Probes in a transformer are thus trained using supervised learning (chapter 12); they can be used when
we know in advance what feature looking for inside a model and already know how to operationalize that
feature’s presence, to source our training labels.

Why is this extra probe training work necessary? The transformer itself is not trained to make its internal
machinery self-explanatory (nor, for that matter, were the brains of us humans, and so we also need probes
and theory to understand how we work). Thus, in LLMs as in human brains, an external process must be
grafted on to the system to make sense of what is going on inside. As Elhage et al. note, “when there are
many equivalent ways to represent the same computation, it is likely that the most human-interpretable
representation and the most computationally efficient representation will be different” [38].

For example, probes can be trained to determine what a model thinks about: how emotionally charged

CHAPTER 18. MECHANISTIC INTERPRETABILITY 197

discussion is as we move from token to token, what grammatical role the current token serves, the positive
vs negative affect of the current token, and whether what is being said is true or false. As long as we have
labeled data we can use it to train a probe.

18.2.2 Sparse Autoencoders

Because probe training is supervised, it requires prior knowledge of input stream features. Entirely unsu-
pervised methods for interpreting activation spaces in a network also exist, the most prominent of which
are sparse autoencoders or SAEs.4 With sparse autoencoders, we do not need to know in advance what
concepts might appear represented in an activation space to find them. Individual neurons in an LLM tend
to be uninterpretable, seemingly each dealing in many unrelated concepts [37, 138] (this is because represen-
tations in neural networks are almost always distributed; see chapter 1).5 An SAE can be used to extract
interpretable features from a set of uninterpretable neuron activations.

An SAE is a learned map from an activation space to a larger hidden unit space such that hidden
unit activations (1) are mostly zero-valued and (2) contain enough information to reconstruct the original
activation afterwards. Since it is an autoencoder, we can train it anywhere inside a network simply by
training it to reconstruct the activations there. We tell the optimizer to prefer hidden unit activations that
are sparse so that we learn a sparse embedding space. Figure 18.2 illustrates the idea. Note the input and
the output are the same–it’s an auto-encoder–but we have trained the hidden unit activations to be sparse.
It is these few active nodes that we now focus our interpretations on.

Figure 18.2: A sparse auto-encoder takes some input activations and maps it back to itself (notice that
the autoencoder is successfully reconstructing its input activations) through a hidden layer which gradient
descent has tried to make as sparsely activating as possible, producing a kind of localistic representation of
the input activations.

The activated neurons in a sparse autoencoder seem to each represent a single, human-interpretable
concept [34, 20]. The theory behind this is that, while there is no particular reason for a model neuron to
correspond to a single human concept, one very sparse solution to the above SAE optimization problem is
to learn which pieces of activation distributed over which neurons all share an underlying concept. If this
mapping can be found, then the SAE can use a single unit of its own to represent a large number of scattered
activations–many activation values can thus be set to a flat zero.

Empirically, SAE features do tend to reflect “high-level” concepts when the SAE is narrower (has fewer
hidden units) and reflect “low-level” concepts when it is wider (has more hidden units). This makes sense:
the number of monosemantic features that a trained SAE can assign to a single unit depends, obviously,
on the number of units it has available. If fewer units are available, the SAE’s reconstruction training will
prioritize capturing the “most active”, common concepts, ignoring niche concepts that come up only rarely.

4Though see also [24] for another significant unsupervised approach.
5Why are individual neurons in a model not ordinarily interpretable? One explanation begins with the idea that a trained

model is trying to be maximally efficient with the neurons afforded to it. The feature superposition hypothesis is the claim
that trained models are lossy compressions of much larger models than themselves. So, it is possible to “overload” a neuron,
treating it as a linear combination of many conceptual classifiers. It can also be helpful to see this as a claim about efficient
modeling of the world. The version of a model that is most interpretable to humans may not be the smallest version of the
model. (From this perspective, sparse autoencoders are just an explicit attempt to undo that “compactification” of the model.)

CHAPTER 18. MECHANISTIC INTERPRETABILITY 198

18.2.3 Activation Addition

A third tool in the toolbox of mechanistic interpretability is activation addition. While activations vectors
in a model’s neuron basis are generally not interpretable, they admit certain kinds of (semantically mean-
ingful) manipulations. You can record a model’s own hidden activations during a forward pass dealing with
a concept, and then re-inject that activation to blend that concept in to behavior in new contexts [156, 174].
In more detail

1. Run the model on some input that elicits the feature you care about (e.g., a description of the Golden
Gate Bridge).

2. Record an activation vector at the chosen sublayer.

3. Scale this vector using scalar multiplication (chapter 6).

4. At another forward pass, add the activation back in at its sublayer.

This method lets us bias or “drug” the model toward a concept without retraining. With a large enough
scaling factor, the model often fixates; a “Golden Gate Bridge” feature turns Claude into a Golden-Gate-
Bridge obsessive, e.g. (see figure 18.3). This is all done without revealing the micro-anatomy: we know
which activation directions matter, but not the underlying circuitry that produces them. As an analogy,
this is more akin to model psychiatry (temporarily steering model behavior without training) than to model
neurosurgery (mapping out synaptic function).

Figure 18.3: Claude’s responses to a question before (left panel) and after (right panel) a Golden Gate
Bridge feature has been clamped to a very high value [153].

The overall suggestion of this line of mechanistic interpretability research is that model activation spaces
seem to be, in terms of semantics, well behaved vector spaces. While we don’t quite know how to a priori
associate a meaning to an activation vector, once we do have an interpretable activation on hand, we can
manipulate it in familiar algebraic ways to get expected results. Activations that are sourced from supervised
and unsupervised methods similarly admit of these algebraic manipulations, for the purposes of validation
and steering of model behavior.

18.3 Major Results in Mechanistic Interpretability

Research in mechanistic interpretability has yielded a number of key results in its domain that are of special
interest to cognitive science.

18.3.1 Toy Models

A (usually tiny) transformer model that has been exclusively trained against a hand-designed algorithmic
task is called a toy model. This name highlights the disparity between these far simpler research projects
and the enormous, trillion-parameter LLMs that we converse with. In exchange for this focus on tiny models,

CHAPTER 18. MECHANISTIC INTERPRETABILITY 199

though, researchers have successfully reverse engineered how some toy models work, and this cannot be said
for full-scale naturalistic models. In these cases we have more-or-less fully worked-out circuits explaining
model behavior.

For example, a toy model trained only to perform modular addition converges to an interpretable algo-
rithm [112].The model is fairly complicated, but the high-level idea is that arithmetical operations can be
represented by activations that are processed through the residual stream. For example in computing a+ b,
each number is represented as a rotation, and the sum of their angles is computed as composition of two
rotations (see figure 18.4).6 Before the circuit was worked out a clue to its function was the presence of
circular structures in the activation space when measured at the attention heads and MLPs ([112] , section
4.1).

Figure 18.4: Addition in a trained neural network is represented by combining rotations together.

18.3.2 Induction Heads

An early success in mechanistic interpretability was the identification of attention head activation patterns
as semantically meaningful. Helpfully, the attention mechanism in transformer blocks (whose activations can
be read as “scores”; see section ??∗) lends itself to interpretation without having to graf on of any additional
structure–just as the output probabilities of a model can be naturally interpreted as a model’s confidence
about its answer, the attention scores of an attention head can naturally be interpreted as “which tokens
that head is attending to, to what degree”.

Several interpretable roles played by attention heads in transformers have been catalogued. “Bigram
heads” are attention heads that solely identify particular pairs of tokens [38]. These heads basically implement
simple rules like: if you see “Barack”, promote “Obama”. Other heads can be seen to do simple context-
sensitive token copying–for example, hanging on to the token “small” or “large” and looking out for the
later token “contains” to follow along with that earlier copied token [38]. Heads can be found “attending to
delimiter tokens, specific positional offsets, or broadly attending over the whole sentence... the direct objects
of verbs, determiners of nouns, objects of prepositions, and coreferent mentions”–a wide range of syntactic
and semantic roles [32, 158]. Other heads specialize in preventing a model from over-repeating a particular
token [100].

Even more flexible are induction heads, which perform sophsiticated in-context learning [38, 117].

Induction heads search over the context for previous examples of the present token. If they don’t
find it, they attend to the first token (in our case, a special token placed at the start), and do
nothing. But if they do find it, they then look at the next token and copy it. This allows them
to repeat previous sequences of tokens, both exactly and approximately [38].

Induction heads are exciting as they were one of the first windows into how models can intelligently
learn in-context. The trick, it seems, is to keep a look out for key regularities in your context, and to
redeploy that regularity later on, when the context is again right. Induction heads are also interesting as
a relatively smooth evolutionary progression from “more primitive” bigram and copy heads–they let us see

6The details are more complicated. It is addition mod P , and uses “discrete Fourier transforms and trigonometric identities”
[112] to support the conversion.

CHAPTER 18. MECHANISTIC INTERPRETABILITY 200

how intelligent semantic behavior might grow out of variations on initially extremely simple statistical and
syntactic rules.

It has been observed that the position of attention heads in a model tends to correlate with their function:
heads near the beginning handle basic syntax, heads in the middle build up to identifying meaning and
conceptual relationships, and heads toward the end of the model specialize in syntax once again (perhaps
cleaning up the model’s final token predictions).

Chapter 19

Spiking Models: Neurons & Synapses
Zoë Tosi, Jeff Yoshimi

Neurons of higher animals (from drosophila to homo sapiens) are characterized by an all-or-nothing on/off
response that propagates signals via discrete packets known as action potentials (APs). APs are charac-
terized by a sudden increase in the membrane potential of a cell, brought about by a positive feedback
process. After a short period of time (typically < 1 ms) other mechanisms in the cell rein in this positive
feedback, causing a rapid decrease in membrane potential. When voltage across the cell membrane is plotted
over time we see a sudden sharp increase, then a rapid decrease in electrical potential taking the form of a
spike (see 19.2). Canonically this spike in the membrane voltage travels down the axon of a neuron to its
synaptic terminals where voltage sensitive processes cause neurotransmitters to be released into the synaptic
cleft, where they are taken up by other cells.

Coming from an engineering or connectionist background this process may seem unfamiliar since “neu-
rons” (perhaps better called “nodes”) associated with canonical artificial neural networks take on continuous
values. Explicitly stated or not these continuous values are typically understood to vaguely represent the
firing rate (number of spikes produced in some time window) of neurons–if such things are even within the
realm of consideration. It is the case that in simple organisms neurons do take on what are known as “graded
potentials”, which can be accurately described by a continuous variable. However these organisms tend to
be extremely small and simple such as C. Elegans, a 1 mm flatworm for which all of the exactly 302 of its
neurons and their connections are known. In higher animals the vast majority of neurons communicate via
spikes and therefore any continuous variable assigned to represent the instantaneous activity of a neuron is
in one way or another derived (using windowed or exponential averages, for example) or an indirect measure
(e.g. a strong correlations between variables like excitatory conductance and firing rate) [120]. Collectively
the set of techniques for converting the activity of a spiking neuron into a single continuous value represent-
ing that activity is known as rate-coding. As it stands there is no clear consensus as to the importance
of precise spike timings versus generalized rate-coded activity when studying information processing in the
brain.

What do we want out of a neuron model? The answer to this depends upon the question(s) we are
interested in. Given that this chapter focuses on “spiking neurons” we will assume that at the very minimum
the questions of interest require that APs not be abstracted away regardless of our use of rate-coding. From
there we have a great many choices, which will be covered in detail later in the chapter. If this minimum
criteria of “produces spikes” is our only criteria then highly simplified models scarcely different from the
nodes of an ANN will fit the bill. Alternatively we may be interested in the particulars of some aspect of
neural dynamics or require that our neurons’ voltage waveforms during spikes correspond to those found in
nature. If that is the case then our neuron model must itself be a complex entity with multiple variables
governed by a set of coupled differential equations. Regardless of the complexity our biological models must
replicate the basic functions of a neuron, which entails more than the neuron model itself. Contrary to what
may be believed neurons and their functions can be understood in relatively simple terms. As a fundamental
unit of the nervous system neurons 1) integrate inputs from neurons and/or some sensory stimulus 2) respond
in some manner to that integrated input, and 3) propagate that output to other neurons or motor outputs.

201

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 202

The models discussed thusfar represent (2) in this formulation. In this chapter we will be discussing both
spiking/biological neuron models and how those neurons interact with other neurons via synapses ((1) and
(3)).

Figure 19.1: A broad comparison of neurons typically found in artificial neural networks and those found in
computational neuroscience network models. These characterizations are not completely definitive, but can
be thought of as describing the prototypical or canonical instantiation of each type.

19.1 Level of abstraction

Neurons are intrinsically complex entities when high levels of detail are taken into account, and indeed many
computational neuroscientists have made neuron models that capture most or all of the relevant features of
the cell. This involves modeling membrane potentials and ion channel dynamics for many different parts of
a neuron. Models that do this are known as multi-compartment models. This is further complicated by the
large variety of neurons and their morphological and electrochemical differences. Depending on the questions
one is interested in modeling with this level of detail may be required.

Here are focusing on networks, so we focus on model neurons with no specific morphology. Thus we
focus on point neurons (sometimes “single-compartment” neurons). Similarly a neuron may connect to
another neuron via many different synaptic terminals that have different impacts on the target cell based on
their strengths and locations (cell dendrites, soma, and the axon hillock being common). We only consider
the impact of a single synaptic connection between two neurons, which stands in for this more complex
relationship. In the literature the total change in a post-synaptic’s membrane potential from a single axonal
fiber is referred to as a unitary post-synaptic potential.

Neurons are also associated with neurotransmitters, which have distinct functions. Synaptic receptors
on the cell respond to specific neurotransmitters from other cells and can be divided into two classes:

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 203

Figure 19.2: A Simbrain desktop with two cells receiving inputs from activity generators. Both are providing
the same sinusoidal input. Above is a typical connectionist neuron using a logistic activation function
(bounded on (-5, 5)) , and below is a spiking neuron model. Across from each is a time series of activation
(blue) and membrane potential (mV; green) for the logistic and spiking neurons respectively. Notice the sharp
increases and rapid decrease in membrane potential; these are “spikes” and if this neuron were connected to
other neurons a signal would be propagating down the outgoing synapses. Also notice that the spikes are not
the same in quantity or overall size and that there are small variations in their distance from one another.
These are the result of the spiking neuron having its own internal dynamics unlike the logistic neuron.

Ionotropic and Metabotropic. Ionotropic receptors are the simplest and are essentially ion channels on
the surface of a cell that respond to a neurotransmitter by either opening or closing, thus rapidly having a
direct, clear-cut impact on the membrane potential of the cell (see 4.1). Most glutamate receptors (NMDA,
AMPA, and kainate) and GABAA receptors are of this type and are excitatory and inhibitory, respectively.
Metabotropic receptors on the other hand respond to neurotransmitters in complex long-term ways. When
these receptors are activated a signal transduction pathway is set in motion that produces complex cellular
and metabolic responses. Well-known neurotransmitters such as Dopamine, Serotonin, Acetylcholine, and
Norepinephrine typically use receptors of this type (see 4.1.3). We focus on ionotropic neurotransmitters in
this chapter.1

1Why abstract away so many potentially important features? The simple answer is that for many questions in neuroscience
these details simply aren’t necessary. This is particularly true of “higher level” phenomena. For instance a neuron’s ability to
store information about its past inputs can be explained without any reference to morphology, metabotropic neurotransmitter
receptors, etc. [94]. Complex features of synaptic structure and firing patterns have also been explained via phenomenological
models that make no reference or appeals to specific chemical interactions [83, 106]. Often it is assumed (with excellent
outcomes) that lower level complexity in fact underlies the higher level mechanisms of a model such that direct simulation
of those complexities is not required–only their effects or their phenomenological outcomes are of importance. As an analogy
consider a car in a videogame about racing. Does the game simulate an internal combustion engine? Must it simulate the
chemical combustion of octane for each cylinder, the friction between various components of the engine and so on? Or is it
acceptable to merely simulate the motion of the car in response to inputs from the user? In this case the important aspect
is the fact that the car moves not precisely how it does it and furthermore we have means of translating input from the user
into the motion of the car in precise, reproducible, and realistic ways that make no appeal to the precise inner workings of the
engine. Now in a sense this analogy could be construed as being in favor of the abstraction of all underlying mechanisms–indeed

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 204

19.2 Background: The Action Potential

An action potential begins with some sort of forcing, which can produced by sensory stimulation, input
from other neurons, input from an experimenter, or the neuron’s own complex dynamics. Regardless of case
causes sodium ion channels to open.

Figure 19.3: A canonical action potential.

19.3 Integrate and Fire Models

The action potential is an all or nothing phenomena that almost always has the same amplitude. Furthermore
the conditions for release of neurotransmitter are also always roughly the same. Thus if we are unconcerned
with modeling the behavior of the membrane potential we can turn our attention entirely to this aspect
of the neuron: Neurons integrate some input which then causes a response. If this response exceeds some
threshold then an action potential is triggered resulting in post-synaptic events being fired along the neuron’s
outgoing synapses. That is why these are referred to as “Integrate and Fire (IF)” neurons. These models
are focused exclusively on the all or nothing action potential. They are usually tuned to make spike timings
and inter-spike intervals (ISIs) more precise and to match these signals to biology. These terms are not
concerned with matching the time-course of the membrane potential, or to ion channel behavior, or to known

why use neural networks at all! The lesson here is not that everything should be abstracted, but merely that certain things
can depending upon what we are interested in. The “right” level of abstraction for neuroscience depends upon what we want
to know, what we are using our models for, and so on. It is a question that is often hotly debated in nearly every context in
which it occurs.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 205

physiological values.2

19.3.1 The Heaviside step function

The spiking threshold model is the simplest of all spiking models. In fact it is so simple that it doesn’t even
meet many of the criteria listed in Fig. 19.1. It focuses on only one aspect of a spiking neuron, namely the
all or nothing response that occurs in response to exceeding a threshold. There are no internal dynamics.

rj = Θ

(∑
i

ri ; θ

)

where: Θ (x ; θ) =

{
0 x < θ

1 x ≥ θ

Here r is the activation value of the neuron, which takes on a discrete value of 1 or 0 based on the
output of the Heaviside function (Θ(x)) for the net input of the neuron (the sum of the outputs of neurons
i projecting onto j). Here we have parameterized the Heaviside function, which typically is 1 for values
greater than or equal to 0 and 0 otherwise such that the argument passed to it (the net input in this case)
must exceed a specified threshold for activation, θ. Models using these neurons are the simplest of all spiking
models and typically are not simulated continuously in time–instead being simulated by discrete iterations.
This implies that networks composed of these neurons typically do not have dynamic synapses and instead
in many ways closely resemble a typical ANN architecture.

19.3.2 Linear Integrate and Fire

The linear integrate and fire model is one of the simplest of spiking neuron models that also has intrinsic
dynamics. While we are not concerned here with fitting voltage traces for neurons, these models do attempt
to capture precise spike timings, including timings that have interesting and varied behavior.

19.4 Synapses with Spiking Neurons

19.4.1 Spike Responses

In the world of spiking neurons we are typically working in a continuous-time scenario rather than with
discrete iterations. This presents a problem for the transfer of synaptic current from one neuron to another,
since spikes are instantaneous events and as instantaneous events have an integral of 0 for all finite values.
Moreover, if we are in the business of simulating spiking neurons then we likely are concerned to some degree
with the more realistic simulation of synapses as well, and in the real world synapses release neurotransmitters
into the synaptic cleft over some duration. Therefore for biological, mathematical, and practical reasons,
a number of functions have been used to describe the post-synaptic response a synapse delivers to the
post-synaptic neuron after a spike occurs.These are spike response functions or in Simbrain, “spike
responders”.

Perhaps the most straightforward spike response function is an instantaneous jump and decay. Here it is
assumed that upon the arrival of a spike a synapse instantly responds, proportional to its synaptic strength,
and that response decays exponentially.

˙qij = −qijτpsr + wijδ(t− tni − τdly)

Or in closed form:
qij(t) =

∑
tni <t

wije
−(t−tni −τdly)/τpsr

2A notable exception might be the Izhikevich model, which was tuned so as to be able to replicate the membrane voltage
traces of different kinds of neurons in addition to matching spike timing behavior.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 206

Here q is the post-synaptic response: the value at each synapse, which the post-synaptic neuron j sums
over to determine the total current from synaptic responses. τpsr is the time-constant of the exponential
decay, wij is the weight of the synapse connecting neurons i and j. t is current time while tni is the time of
spike n at neuron i and τdly is the time-delay over the synapse. Lastly δ is the Dirac-delta function. This
function is commonly used to represent spikes in continuous time systems, it is a function that is zero at all
points on [−∞,∞] except 0 where it is infinite. Thus its integral

∫∞
−∞ δ(x)dx = 1. This corresponds to a

convolutional instantaneous jump and decay since the result of the application of this differential equation
on the entire spike train of neuron i, (n = 1, ..., N ; tni) is equivalent to the convolution of that spike train
with an exponential kernel with a time constant of τpsr. This isn’t always (nor does it have to be) treated
as a convolution however and a maximum post synaptic response: qmax can be established if so desired.

The instantaneous rise in post-synaptic response is not particularly realistic, since it takes some time for
neurotrasmitter release to fully activate (not every synaptic vesicle is filled and touching the cell membrane
ready for release after all). Thus there exist formalisms for modeling both the rise and the decay of a post-
synaptic response. The simplest of these is the rise and decay or alpha function, which models both rise and
decay using the same time constant. Having the same same time constant for both rise and decay is not
particularly realistic, but it is also not an unreasonable approximation, and provides more realism than the
instantaneous jump and decay function.

˙qij = −qij/τpsr + r

ṙ = −r/τpsr + wijδ(t− tni − τdly)

Or in closed form:

qij(t) =
∑
tni <t

wij

(
t− tni − τdly

τpsr

)
e1−(t−tni −τdly)/τpsr

Here all variables are the same as in the previous section. Notice that we will reach our maximum
response when the difference between the current time t and the arrival of pre-synaptic spike n from neuron
i (t− tni − τdly) is equal to our time constant τpsr.

19.5 Long-term plasticity

19.5.1 Spike-Timing Dependent Plasticity (STDP)

Spike-Timing Dependent Plasticity (STDP) is to spiking neurons what Hebbian learning is to continuous-
valued nodes in a traditional artificial neural network. It is a mechanism for altering the strength of synaptic
connections in a (typically) temporally asymmetric way such that certain pairings of spike times result in a
change of the strength of a synapse. STDP or some variation thereof is believed to be a key component of
a group of mechanisms underly memory, learning, and information processing in the brain. It is believed to
play a key role in the development and maintenance of the specific synaptic structure of neural circuits.

A Hebbian version of STDP is such that a spike in the pre-synaptic cell that temporally precedes a
spike in the post-synaptic cell leads to a strengthening of the synapse while a spike in the post-synaptic cell
which precedes a spike in the pre-synaptic cell leads to a weakening of the synapse. The former is known as
Long-Term Potentiation (LTP) while the latter is referred to as Long-Term Depression (LTD). This
sort of relationship acts to create or reinforce positive temporal correlations between two neurons (at least
in the case that the pre-synaptic cell is excitatory). However, STDP is not always Hebbian and can take on
other forms. The STDP Window is a function that takes as input the difference in spike times between
a pre- and post-synaptic cell and outputs the change in the strength of the synapse connecting them. The
familiar Hebbian window is the most common as it is ubiquitous among connections between two excitatory
cells (which make up 80% of any given neuronal population in cortex). More exotic windows (of which there
are many) are typically found at synapses where one or both of the cells involved are inhibitory.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 207

19.5.2 STDP

In its most simple forms STDP is performed additively giving rise to the name “Addititve STDP” (or “Add-
STDP). Here we introduce the fundamental formalisms of STDP, which will appear in other variants and
use add-STDP (sometimes referred to as “vanilla” STDP) as the particular instantiation.

Add-STDP refers to a broad set of models for STDP for which the change in the strength of a synapse is
independent of the strength of that synapse. That is, weight changes occur in an additive fashion. Add-STDP
takes on the following form:

∆wij = ηA+/−exp(−|u|τ+/−)

where u = tfj − tfi and tf is the most recent time that either neuron i or j produced an action potential
and η is a learning rate. The A+/− term is one of two different constants depending upon the sign of u (the
difference in spike times between the pre- and post-synaptic cell). As the nomenclature implies this gives us
A−, which is typically negative reflecting LTD for negative u (pre- fired after post-) and A+ (typically positive
reflecting LTP) for positive u (post- fired after pre-). Similarly τ is a time-constant determining how quickly
the effects of LTP and LTD decay over time in relation to the amount of time between pre- and post-synaptic
spikes and as with A, τ+ and τ− correspond to LTP or LTD. Together, this creates a piecewise exponential
function centered (usually) on zero. This discrete formulation is applied instantaneously whenever neurons
i or j fire.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 208

Figure 19.4: The response in the membrane potential of a linear integrate and fire neuron (blue/top) to a
constant current injection (red/bottom). Notice the nonlinear dynamical response in the LinIF neuron’s
membrane potential to a constant step in current.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 209

Figure 19.5: The post-synaptic responses for 4 different spike response mechanisms (red) plotted alongside
the resulting change in post-synaptic membrane potential (blue). From top to bottom, we have a step-
function, an instantaneous jump and decay with no convolution, a convolutional jump and decay, and a rise
and decay function. Here post-synaptic neurons obeyed a linear integrate and fire rule. Notice the dynamical
response from the post-synaptic IF neurons.

CHAPTER 19. SPIKING MODELS: NEURONS & SYNAPSES 210

Figure 19.6: A diagram of STDP paired with empirical data showing the change in amplitude of the exci-
tatory post-synaptic current (EPSC) produced by a synapse impinging on a neuron after repeated external
stimulation of a pre- and post-synaptic neuron so as to force spikes in the two neurons with specific temporal
differences. For each pair the stimulation protocol was repeated 60 times at a rate of 1 Hz and changes in
synaptic efficacy were measured at 20 minutes after the protocol [14]. A distinct shape can be seen whereby
synapses where the pre-synaptic neuron was forced to spike immediately before its post-synaptic partner
experienced the greatest increase in strength with this increase dropping off exponentially with an increase
in temporal difference between the pairs. Likewise pairs ordered such that the post-synaptic neuron fired
first experienced a decrease in efficacy, which was most extreme if paired closely and also fell of exponentially
with distance.

Chapter 20

Reservoir Networks
Zoë Tosi, Jeff Yoshimi

Another approach to training recurrent networks is to, in essence, not train them at all, using a technique
known as reservoir computing. RNNs offer a suite of advantages over their feed-forward cousins owing to
their potential ability to store information about past stimuli which is made possible by recurrent connectiv-
ity. Because feedback connections exist, the current state of the nodes in the recurrent portion of the network
(and any information it contains about prior inputs or states) becomes part of the input in determining the
next state of those nodes. They become ideal, then, for processing time-series data (as opposed to simple
pattern association tasks).

However, the kind of internal dynamics which make RNNs desireable (they have a “life of their own”)
also makes them difficult to effectively use. Throughout the 1980s and 1990s the problem of how to properly
train RNNs prevented them from being used on a wider scale. How exactly the recurrent weights should
be altered in response to an error signal was largely unclear. In 2001 two separate researchers, Herbert
Jager and Wolfgang Maass, a computer scientist and neuroscientist respectively, independently came to
the conclusion that the reverberating internal dynamics within the recurrent portion of a network could be
harnessed without training the recurrent weights so long as certain constraints were imposed on the networks
in question. That is, instead of formally training the recurrent weights and trying to calculate what node
activations should be in a likely chaotic system, why not bypass the issue entirely by instead simply focusing
on putting the recurrent portion into a helpful dynamical regime. But what would such a regime look like?
Does such a thing even exist? If so, how does one go about imbuing a RNN with it?

The answers to these questions can be found in a humble pond of water. Suppose you’re standing in
front of a pond on a cool autumn day. There is no wind, the multitude of water-dwelling insects of summer
have gone into hiding for the winter, and the fish have no reason to breach the surface. It is in fact so placid
that the pond could be mistaken for an oddly shaped mirror reflecting the sky above. You notice a few
pebbles by your feet and, perhaps uncomfortable with just how still this scene is before you, you decide to
pick one up and toss it into the water. It makes a small splash and ripples emanate in a ring from where the
pebble plopped down. The ripples eventually reach the edge of the pond and are reflected back toward the
center, the tiny waves interfere with one another creating a striking pattern given the former stillness of the
pond. But as they continue to reverberate across the pond’s surface they become smaller, less defined, and
eventually the pond returns to its placid state–as if you’d never thrown the pebble at all.

You decide to toss in another pebble, but this time you throw a little harder. As before, the pebble plops
into the pond, but this time significantly further away. Once again, ripples emanate from the place where
the pebble dropped, but this time–being as it is, closer to the other side of the pond–some of the ripples
reach the water’s edge opposite you sooner, reflect back, and after a few moments you realize the patterns
of ripples on the surface this time are completely different than before. You throw another stone... this time
it lands mere centimeters from where the original pebble did. The ripples radiate outward once more and
as far as you can tell are nearly indistinguishable from those that came from the first pebble you threw.
The ripples reflect back, slightly differently from the first time, but to your surprise after mere moments the
pattern of ripples on the water’s surface is different from the ones produced by either of the two previous

211

CHAPTER 20. RESERVOIR NETWORKS 212

stones, though much closer to the pattern produced by the first stone. This is because when you drop a stone
into the pond the perturbation to the water’s surface is unique to the location where the stone was dropped.
Proximal drop locations produce similar patterns of ripples that remain more similar for longer amounts of
time, while spatial distant ones are immediately completely different. Note the following: You did not have
to do anything to this pond for this to be the case; it is simply an intrinsic property of fluids. It arises from
the fact that the pond is 1) responsive to external perturbation, 2) all perturbations eventually die out, with
the pond returning to its initial unperturbed state, and 3) that the dynamics of the system (water molecules
and surface tension) respond consistently to the same perturbation yet are complex enough that different
perturbations produce different states. This doesn’t just apply to where a single stone has been dropped into
the pond, for if one stone was thrown right after another the pattern of ripples would be unique to where and
when the two stones were thrown relative to one another, with the effects of the more recently dropped stone
taking longer to dissipate than those of its earlier counterpart. This means that the pattern of ripples on the
surface of our pond at any given time actually represents (i.e. contains information concerning) the history
of perturbations to the pond! An example of this representational capacity was concretely demonstrated in
[43] where a literal bucket of water was used for nonlinear pattern separation 20.1.

Suppose you come back to the pond in the dead of winter. Now when you toss a stone at the pond they
create tiny ablations on the hard surface, but unlike when the surface was liquid, the points of impact do
not change over time. There is no way to tell how long ago you dropped the stones or in what order because
the system doesn’t respond meaningfully to external perturbations beyond the initial point of impact. Any
pattern of marks on its surface could’ve arisen at any point in time after it froze and in any order. The ice
simply sits there, solid, unchanging, and impregnable. The surface of the pond has lost its spatiotemporal
representational capacity by being frozen–perfect for ice skating–though perhaps less interesting in and of
itself. Dynamically this is referred to as an ordered regime.

Figure 20.1: Pattern recognition has literally been done in a bucket of water, providing a concrete example
of the water metaphor. Ripples on the surface were recorded in response to labelled inputs (perterbations
emanating from the left or right side of the bucket, and when combined with a perceptron classifier was able
to perform nonlinear pattern separation (XOR). Retrieved from [43].

After your afternoon of ice-skating, you once again brave the harsh, icy winds, and return home. Hungry,
cold, and tired, nothing sounds better than a nice bowl of soup. You head to the kitchen, grab a pot, fill
it with water, and then place it atop the stove. Setting the burner to high you stand in front of the pot,
warming yourself while waiting patiently for the water to boil. Initially it’s as still as the autumn pond. You
tap the water’s surface with a wooden spoon and watch as the ripples emanate from the point of contact,
peacefully expanding out, hitting the walls, reflecting, interfering, and eventually dying out exactly as you
remember. As time goes by, little bubbles form on the bottom of the pot, turning to larger bubbles, and
before you know it the water in the pot has been brought to a rolling boil. Its surface constantly bubbles,
always moving–a stark contrast to its prior stillness. You look at the complex and ever changing structure on
the surface of the boiling water, and realize just how unlikely it is that at any previous time the water looked
exactly as it does now. You forcefully, but carefully drop in the bottom of your spoon. You can see small
waves from the point of contact, but only for a brief instant as they are fully consumed and incorporated
into the surrounding disorder. Curious, you aim your spoon well and make contact with the surface just
as forcefully before and as close as you could to the last place where you dropped the spoon. To no one’s
surprise once again small waves are created which quickly dissipate into the chaos of the churning, bubbling,

CHAPTER 20. RESERVOIR NETWORKS 213

liquid in the pot. Consistent with your realization from before, it is apparent that despite dropping in your
spoon with the exact same amount of force and in the exact same position, the state of the surface of the
water before you has likely never looked exactly like this before and is completely different from its state in
the same interval of time after your first spoon drop. The water, in its excited state, has taken on a life of
its own–one which incorporates your perturbations, but which is unpredictable–assigning completely unique
states to even the same perturbation. The water has lost it’s spatiotemporal representational capacity by
boiling. Dynamically this is referred to as the chaotic regime, and just as with the ordered regime it is
largely useless from the perspective of reliably representing past inputs.

If the boiling pot was in a chaotic regime and the frozen pond was in an ordered regime, then how
would we describe the liquid surface of the pond all those months ago? The answer is: the edge of chaos,
a dynamical regime where the system is affected by perturbations, but the differences between the states
produced by the perturbations and the perturbations themselves remain largely constant. Figure 20.2 gives
us an example of the sorts of activity we expect to find as well as the conditions necessary to produce their
respective dynamical regimes in an actual neural network as opposed to liquid (or solid) water.

Figure 20.2: Here we have an example of ordered, chaotic and edge-of-chaos dynamical regimes in a recurrent
neural network as well as what portions of the network’s parameter space in terms of the variance of weights
(σ2) and the mean value of the input signal (µ̄) Notice the similarities in the network’s responses to an input
signal (top row) and the pond metaphor used previously. The left-hand side gives us a network that presents
no or very little information on time-series and is only capable of representing the current input. For the
toy network used in [12] the ordered regime occurs when the variance of the weights is low and/or the input
signal is strong. The right-hand side gives us a network whose activity is dominated by its own internal
dynamics, which is not consistently or obviously responsive to the input time-series. Likewise this dynamical
regime is produced by high variance among the recurrent weights and typically weaker input signals.The
middle plot represents the ideal dynamical regime for these networks because it responds to the input signal,
but also has some autonomous internal dynamics which are capable of preserving information about previous
entries in the time-series. Networks with this property occupy a specific manifold in the parameter space of
variance on the weights and strength of the input signal. Image retrieved from [12].

This representational capacity comes “for free” as it were, given the nature of the material in question.
What if we could imbue recurrent neural networks with those same properties, i.e. the intrinsic ability to
represent perturbations as transients? Instead of peaks and troughs across the surface of water, could not
the same sort of thing be accomplished with activity across a recurrent network? What sorts of constraints
would need to be placed on the network for such a thing to be possible? What properties must it possess
and how can we describe those properties? These are the questions that Wolfgang Maass and Herbert

CHAPTER 20. RESERVOIR NETWORKS 214

Jaeger independently asked themselves. Instead of training recurrent weights to reduce error, the problem
then was how to “tune” the network such that it would possess these properties, thus requiring no explicit
training, beyond a linear classifier which would simply learn to distinguish different patterns of activity in
the so-called dynamical reservoir. In fact Wolfgang Maass found that recurrent spiking neural networks held
to some minimal biological constraints actually possessed this property intrinsically, while Herbert Jager
was able to derive a set of theorems for constraints on the recurrent weight matrix in a connectionist-style
network which guaranteed a fading memory and therefore this property (called ”the echo-state property” by
Jaeger).

There are two main kinds of reservoir networks: echo state networks and liquid state machines (the
basic difference is that liquid state machines use spiking neurons). A picture of an echo state network is
shown in Fig. 20.3. The idea is to take a recurrent network (the “reservoir”) and see what we can get it
to do by driving it with inputs. Reservoir computers are somewhat neurally realistic: the central reservoir
is a recurrent network, like the kind of networks found in the brain, and the brain’s recurrent networks are
typically driven by inputs from other world or from the external world.

Figure 20.3: An echo state network, which is one kind of reservoir computing network.

The input nodes of an echo state network or liquid state machine drive a reservoir, which is an arbitrary
recurrent network, like one of the networks discussed in chapter 10. Recall that those networks produce all
kinds of interesting dynamical patterns, e.g. n-cycles of various lengths (2-cycles, 10-cycles, 100-cycles) and
even chaotic behaviors. Recall that unfolding patterns in a recurrent network correspond to trajectories in
an activation space. Here we have trajectories in the activation space of the reservoir. The inputs change
which trajectory the system is following.1 The trajectories induced by the input stream produce states that
can then be classified using the output layer, a “readout”, which is trained using LMS or a related algorithm.

Again we are just reusing existing ideas, combining a recurrent network with a few feed-forward networks
and training some of the weights using the least mean squares algorithm. We are basically training a network
to associate reservoir states with desired readout states, and thereby to associate trajectories in the reservoir
activation space with trajectories in the output space.2 Reservoir networks can be used to classify temporally

1The reservoir’s activity at any moment can be thought of as a high dimensional spatial representation of a lower dimensional
time-series over some interval which constitutes its effective memory capacity. Recall that we focused before on dimensionality
reduction. Here we are going from lower to higher dimensions, which can be useful for classifying temporally extended input
streams. States that are not linearly separable in a lower dimensional space can often be separated by a hyperplane through a
higher dimensional one. That is the dynamical reservoir can be thought of as taking nonlinearly separable lower-dimensional
time-series and projecting them into a higher dimension where they are linearly separable. Hence the only training that is
required is the rather efficient training of output weights.

2Our training dataset D = (I, T) has the same form as usual, but behind the scenes we can use it to create a second training

CHAPTER 20. RESERVOIR NETWORKS 215

extended inputs (e.g. say what kind of music is being played) or to generate a particular type of input (e.g.
the input is a frequency and the output is a sine wave at that frequency).

A primary goal of reservoir computing is to understand the computational power of the kinds of recur-
rent networks we see in brains. This is useful for the scientific project of understanding what the theoretical
properties of brain networks are. It’s also a research project in machine learning. It may be that reservoir
computers end up having advantages over other trained recurrent networks, e.g. supervised recurrent net-
works, which we discuss next (which can be very computationally demanding). This is because they use very
simple components. The output is just a linear classifier (trained using a variant of LMS) which is faster to
use than supervised recurrent methods.3.

dataset, D′ = (I′, T ′), where T = T ′, and where the ith input vectors in I′ corresponds to the states produced in the reservoir
when it is exposed to the corresponding ith input vector in I.

3The problem, however, is that it’s not clear how one goes about making a good reservoir, which is an active research topic

Chapter 21

Glossary

Action potential A rapid change in the membrane potential of a neuron, caused by a rapid flow of charged
particles or ions across the membrane that occurs during the excitation of that neuron.

Activation Value associated with a node. Has different interpretations depending on the context. It can,
for example, represent the firing rate of a neuron, or the presence of an item in working memory.

Activation function Function that converts weighted inputs into an activation in some node updated
rules.

Activation space The set of all possible activation vectors for a neural network.

Activation vector A vector describing the activation values for a set of nodes in a neural network.

Anterograde amnesia A type of memory loss or amnesia caused by brain damage in the hippocampus,
where the ability to create new fact-based or declarative memories is compromised after the injury.

Antipattern Intuitively, the antipattern of a pattern p is the pattern formed by “flipping” every value in p.
For a binary pattern we swap 0’s and 1’s. For a bipolar pattern we swap -1’s and 1’s. Examples: the
antipattern of (0, 1, 0) is (1, 0, 1). The antipattern of (−1, 1,−1) is (1,−1, 1). Antipatterns are kind of
spurious memory.

Artificial neural network (Acronym: ANN) a collection of interconnected units, which processes infor-
mation in a brain-like way.

Attractor A state or set of states with the property that any sufficiently nearby state will go towards it.
Fixed points and periodic orbits can be attractors.

Ataxia Impaired coordination or clumsiness caused by neurological damage in the cerebellum.

Auditory cortex Regions of the temporal lobes of the brain that process sound.

Auto-associator A pattern associator that learns to associate vectors with themselves. In a recurrent
network this can be used to model pattern completion. In a feed-forward network this can be used to
test whether an input can be represented in a compressed form in the hidden layer and then recreated
at the output layer.

Automatic process A cognitive process that not require attention for its execution, and is relatively fast.
Examples include riding a bike, driving a car, and brushing your teeth.

Axon The part of the neuron that carries outgoing signals to other neurons.

Bag of words : A representation method that associates a document with a vector of word frequencies,
where each entry of the vector corresponds to a word and the value of the entry corresponds to the

216

CHAPTER 21. GLOSSARY 217

number of times that word occurs in the document. The underlying idea is that the word usage fre-
quencies would capture the (semantic) content of a document. The order and grammatical information
of the words in the document is disregarded, hence the term “bag”. A form of document embeddings,
as contrasted with token or word embeddings, are more common with neural networks.

Backpropagation (Synonyms Backprop): A supervised learning algorithm that can train the weights of
a multi-layer network using gradient extent. Can be thought of an extension of Least Mean Square
methods for multi-layer networks.

Basal ganglia A structure below the surface of the cortex (subcortical) that is involved in voluntary action
and reward processing.

Basin of attraction The set of all states in a state space that tend towards a given attractor.

Basis A linearly independent set of vectors that span the whole vector space. Any two bases for a vector
space have the same number of vectors.

Bias A fixed component of the weighted input to a node’s activation. Determines its baseline activation
when no inputs are received.

Bifurcation A topological change that occurs in a dynamical system as a parameter is varied.

Binary vector A vector all of whose components are 0 or 1.

Biological neural network A set of interconnected neurons in an animal brain.

Bipolar vector A vector all of whose components are −1 or 1.

Boolean functions Functions that take a list of 0’s and 1’s as input and produce a 0 or 1 as output. The
0 represents a “False” and the 1 represents a “True”. Boolean functions can be realized by logic gates.

Brain stem The lowest part of the brain that connects to the spinal cord and is fundamental for breathing,
heart rate, and sleep.

Broca’s area A region of the frontal lobe associated with language production, gesture, and speech. Dam-
age to this area can lead to Broca’s aphasia, affecting speech fluency.

Categorical data Data that can take one of a discrete set of values. For example, the time of day can be
treated as a categorical variable taking two values: day and night. Also called nominal data.

Cerebellum A structure below the surface of the cortex (subcortical) involved in balance and fine move-
ments, as well as maintaining internal models of the world for motor control.

Cerebral cortex The outer layer of the brain characterized by its structural folding (gyri and sulci); un-
derlies complex behavior and intelligence in higher animals.

Chaotic dynamical system A type of dynamical system in which the future behavior of the system is
hard to predict. Such systems have sensitive dependence on initial conditions. Compare the “butterfly
effect.”

Clamped node A node that does not change during updating. Any activation function associated with
the node is ignored, and its activation stays the same.

Clamped weight A weight that does not change during updating. Any local learning rule associated with
the weight is ignored, and its strength stays the same.

Classification task A supervised learning task in which each input vector is associated with one or more
discrete categories. An example would be classifying images of faces as male or female. When classi-
fication associates each input with one category only, a one-hot encoding is often used on the output
layer.

CHAPTER 21. GLOSSARY 218

Column vector A vector whose components are written in a column e.g.

2
1
3

.

Competitive learning A form of unsupervised learning in which outputs nodes are trained to respond to
clusters in the input space.

Component One entry of a tensor. For example, in the vector (1, 2, 3) the second component is 2.

Computational neuroscience The study of the brain using computer models.

Computational cognitive neuroscience The use of neural networks to simultaneously model psycholog-
ical and neural processes.

Connectionism The study of psychological phenomena using artificial neural networks.

Context window The set of tokens that can be converted to vectors using a word embedding and sent as
input to a transformer-based LLM. The context window encompasses both user prompts and system
responses; that is, both sides of a “conversation” with an LLM. Larger context windows allow LLMs
to produce more coherent outputs and take account of more of a conversation.

Convolutional layer A special kind of weight layer where a set of weights (a “filter”) is scanned over
a previous node layer to produce activations in a target layer. This is related to the mathematical
operation of convolution.

Controlled process A cognitive processes that requires attention for its execution, and is relatively slow.
Examples include solving math problems, doing homework, or performing an unusual task that you
have not practiced.

Cortical blindness Neurological impairment caused by damage to the occipital lobe that results in blind-
ness or inability to see. This can occur without any damage to the eyes.

Cross talk A phenomenon where training patterns interfere with one another when training a neural net-
work to perform some task.

Data cleaning Removing, fixing, replacing, or otherwise dealing with bad data. Includes subsetting data,
i.e. extracting rows or columns or removing rows or columns. One stage of data wrangling.

Data science An area of science and practice concerned with managing and analyzing datasets, often using
tools of machine learning, including neural networks.

Data wrangling (Synonyms Data munging, pre-processing): the process of transforming data into a form
usable by a neural network. Encompasses obtaining, cleaning, imputing, coding, and rescaling data.

Dataset Any table of numerical values that is used by a neural network, or that will be used by a neural
network after pre-processing. (This is not a standard definition, but one stipulated in this text).
Input, output, target, and training datasets are specific types of tables used in specific ways by neural
networks.

Decision boundary In the context of a classification task, a hypersurface (e.g., in 2 dimensions, a line)
that divides an input space into decision regions. Each decision region is associated with one possible
output.

Decision region In the context of a classification task, a region of the input space associated with a specific
class label. Any input that is in that region produces an output corresponding to that regions class
label.

Deep network A neural network with a large number of successive layers of nodes mediating between
inputs and outputs. Deep networks are trained using deep learning techniques.

Dendrite The part of the neuron that receives signals from other neurons.

CHAPTER 21. GLOSSARY 219

Dendritic spine Small outgrowths on the end of a dendritic branch where the receptors to which neuro-
transmitters attach can be found.

Dimension of a vector space The number of vectors in a basis for a vector space. This equals the number
of components the vectors have. Examples: the line is a 1-dimensional vector space; the plane is a
2-dimensional vector space.

Dimensionality reduction A technique for transforming an n-dimensional vector space into another vec-
tor space with m < n dimensions. A way of visualizing higher than 3-dimensional data that would
otherwise be impossible to visualize.

Discriminative model A model that associates feature vectors, which are often distributed representa-
tions, with discrete categories (e.g. one-hot localist vectors). Categories can be discriminated from
distributed feature vectors. This is a non-standard, informal definition. The formal definition is that
a discriminative model is a model of the conditional probability of categorical outputs given inputs.
Contrasted with generative models.

Distributed representation A representation scheme where patterns of activation across groups of neu-
rons indicate the presence of an object.

Dorsal stream Pathway that extends from the occipital lobe into the parietal lobes, underlying visuospatial
processing of visual objects in space. Damage to this pathway can cause impairment in reaching and
grasping for objects.

Dot product The scalar obtained by multiplying corresponding components of two vectors then adding
the resulting products together. Example: (1, 2, 3) • (0, 1,−1) = 0 + 2 − 3 = −1.

Dynamical system A rule that says what state a system will be in at any future time, given any initial
condition.

Environment A structure that influences the input nodes of a neural network or is influenced by the output
nodes of a network, or both.

Error function A function that associates a network and a training dataset with a scalar error value.
Many supervised learning techniques attempt to modify network parameters so as to reduce the error
function. Also called a “loss function” or, in the context of mathematical optimization, an “objective
function.”

Error surface The graph of a function from parameters values of a network to error values of an associated
error function. Each point on an error surface corresponds to different parameters (usually weight
values and biases) of a network. Gradient descent finds minima on an error surface, where error is
relatively low.

Example (Synonyms Instances, cases): rows of a dataset. Used in phrases like input example, training
example, etc., depending on which dataset we are considering.

Excitatory synapses Synapses where an action potential in a presynaptic neuron triggers the release of
neurotransmitters that then increase the likelihood of an action potential occurring in the postsynaptic
neuron.

Evolutionary algorithm An algorithm that creates a model based on simulated evolution. In the context
of neural networks, or “evolved neural networks”, a set of randomly generated neural networks is
created and they are used to perform some task. Those that perform best are kept and combined with
other top performers, and the resulting networks are used to perform the same task. The process is
repeated over many generations. Closely related to genetic algorithms.

Fan-in weight vector The weight vector for all of the inputs to a node in a neural network.

Fan-out weight vector The weight vector for all of the outputs from a node in a neural network.

CHAPTER 21. GLOSSARY 220

Feature (Synonyms Attribute, property): a column of a dataset, often associated with a node of a neural
network.

Feature Map A node layer that is the output of a convolutional layer, in which each activation is the result
of a filter being multiplied (using the dot product) to one region of the input layer.

Feature-extraction (Synonym Coding): process of translating non-numerical data (e.g. text, images,
audio files, DNA sequences) into a numerical format.

Feed-forward network A network comprised of a sequence of layers where nodes in each layer any layer
are connected to neurons in subsequent layers. Contains no recurrent connections. Skip or residual
connections that allow information to bypass one or more layers can also be used. Commonly used in
supervised learning tasks, such as classification and regression.

Firing rate number of spikes (action potentials) A neuron fires per unit time. Usually measured in hertz,
that is, number of spikes per second. A higher firing rate corresponds to a more “active” neuron.

Filter (Synonym Kernel): the set of weights in a convolutional layer. This is more or less the same thing
as a convolutional layer, but it refers specifically to the weights, whereas “convolution” also refers the
process of passing the filter over the input activations.

Filter Bank A set of filters. One kind of volume-to-volume layer in a convolutional neural network.

Fixed point A state that does not change under a dynamical system. The system “stays” in this state
forever. An orbit consisting of a single point.

Flatten The process of converting a tensor with rank 3 or greater to a vector. Allows the output of a
convolutional layer to be sent to a standard feed-forward node layer.

Frontal lobe Forward-most lobe of the brain whose many roles include decision-making, action planning,
and executive control. Houses many important regions, including prefrontal cortex (PFC), orbitofrontal
cortex (OFC), and motor cortex.

Generalization The ability of a neural network to perform tasks that were not included in its training
dataset. An example would be a network that was trained to identify 10 faces as male, and 10 as
female, being able to perform well on (or “generalize to”) new faces it has not seen before.

Generative AI Artificially intelligent systems (often neural networks) that are capable of creating text,
images, video, and other content, often at a level that is passably human.

Generative Model A model that can be used to generate prototypical features associated with some
category, for example, associating a localist category label with a distributed feature vector. This is a
non-standard definition. The formal definition is that it is a model of the joint probability distribution
over a set of inputs and outputs. Contrasted with discriminative models.

Graceful degradation A property of systems whereby decrease in performance is proportional to damage
sustained. The contrast is with brittle systems, in which a small amount of damage can lead to complete
failure.

Gradient descent A technique for finding a local minimum of (in a neural network context) an error
function. Network parameters are iteratively updated using the negative of the gradient of the error
function, which can be thought of as an arrow pointing in the direction in which the error surface is
dropping most rapidly.

Hemineglect Neurological impairment caused by damage to regions of the parietal lobes characterized by
a lack of attending to anything in one half of the visual field.

Hippocampus A structure below the surface of the cortex (subcortical) that is involved in long-term
memory consolidation and spatial maps. Damage to this structure can cause memory loss, or amnesia.

CHAPTER 21. GLOSSARY 221

Hyperparameter In the context of neural networks, a parameter that is not updated while a learning
algorithm is applied. A learning rate is a hyperparameter, as is the size of a hidden layer, because both
are set prior to training and are not updated during the training process.

IAC network A neural network used to model human semantic memory by spreading activation between
pools of mutually inhibitory nodes that implement a winner-take-all or competitive structure. Weights
are set by hand.

Inhibitory synapses Synapses where an action potential in a presynaptic neuron triggers the release of
neurotransmitters that then decrease the likelihood of an action potential occurring in the postsynaptic
neuron.

Imputation The process of filling-in missing data in a data set. One stage of data wrangling.

Initial condition The state a dynamical system begins in.

Input dataset A dataset whose rows correspond to input vectors to be sent to the input nodes of a neural
network.

Input node (Synonym: sensor): a node that takes in information from an external environment.

Input space The vector space associated with the input layer of a neural network. The set of all possible
input vectors for a neural network.

Labeled dataset A conjunction of two datasets: an input dataset with input vectors, and a target dataset
with target vectors or “labels”. An input-target dataset. Used for supervised learning tasks.

Large language model (LLM) A model that generates language based on a large dataset. LLMs are
typically implemented as using the transformer architecture.

Learning In a neural network, a process of updating synaptic weights so that the network improves at
producing some desired behavior relative to an error function or other objective function.

Learning rate A value that controls how much parameters are updated each time a learning rule is applied.
Lower values lead to slower learning; larger values to faster learning.

Learning rule (in neural networks) A rule for updating the weights of a neural network. Application of
this rule is sometimes called “training.”

Least mean square (Synonym Delta rule): a supervised learning algorithm that adjusts weights and biases
of a 2-layer feed-forward network so that input vectors in a training dataset produces outputs as similar
as possible to corresponding target vectors.

Linear activation function A function that is typically just the weighted input, sometimes scaled by a
slope parameter. A piecewise linear activation function clips weighted input at upper and lower bounds.
The ReLU function only clips at a lower bound of 0.

Linear combination To make a linear combination from a set of vectors we multiply each vector in the
set by a scalar and then we add up the resulting vectors.

Linearly dependent A set of vectors is linearly dependent if there is at least one vector in the set can be
expressed as a linear combination of the other vectors in the set.

Linearly independent A set of nonzero vectors that is not linearly dependent is linearly independent.

Linearly inseparable A classification task that is not linearly separable.

Linearly separable A classification task can be solved using a decision boundary that is a line (or, in more
than 2-dimensions, a plane or hyperplane).

CHAPTER 21. GLOSSARY 222

Logic gates Devices that compute Boolean functions. For example, an AND gate has two inputs and one
output. When both inputs are set to “True” the gate produces a “True” as output; otherwise the gate
produces a “False” as output. Simple neural networks can implement logic gates.

Localist representation A representation scheme where activation of individual neurons indicate the pres-
ence of an object. Example: activation of neuron 25 indicates the presence of my grandmother.

Long Term Depression (LTD) A process by which the efficacy of a synapse is decreased after repeated
use.

Long Term Potentiation (LTP) A process by which the efficacy of a synapse is increased after repeated
use. LTP is part of the basis of the Hebb rule.

Machine learning The use of statistical techniques to produce artificial intelligence. Uses of neural net-
works as engineering devices are a kind of machine learning.

Matrix A rectangular table of numbers. Often used to represents the weights of a neural network.

Membrane potential The voltage that results from the difference in the total sum charge of ions on either
side of the cell membrane. A cell at rest typically has a resting membrane potential of -70 mV.

Motor cortex Region of cortex that resides in very rear-most part of the frontal lobes that is responsible
for the planning and execution of movement.

N-cycle A finite set of n states that a discrete-time dynamical system visits in the same repeating sequence.
For discrete-time dynamical systems periodic orbits are n-cycles.

Neuron A cell in the nervous system specialized to transmit information.

Neurotransmitters Small chemical packages that transmit signals from one neuron to another via synapses.
These packages are released when an action potential in a pre-synaptic neuron stimulates their release
from vesicles on the axon terminals into the synaptic cleft where they travel to receptors on the den-
drites of a post-synaptic neuron.

Node (Synonyms Unit, artificial neuron): a simulated neuron or neuron-like element in an artificial neural
network.

Node Layer A collection of nodes that are treated as a group. For example, in a feed-forward network
every node in one layer can be connected to every node in another layer. The activations in a node
layer can be represented with an activation vector. Without qualification, “layer” means node layer.

Numerical data Data that is integer or real-valued. Examples include age, weight, and height. Data for
a neural network must usually be converted into a numerical form.

Occipital lobe The lobe located in the back of the cortex where visual processing primarily takes place.

One-hot encoding A one-of-k encoding technique in which a category with k values is represented by a
binary vector with k components and the current value of the category corresponds to which nodes
is on (or “hot”). Example: representing cheap, moderate, and expensive restaurants with vectors
(1, 0, 0),(0, 1, 0) and (0, 0, 1). One-hot encodings are orthogonal t each other.

Optimization The process of finding the maximum or minimum of a function. In neural networks, it is
often used to find network parameters for which error is lowest.

Orbit (Synonym Trajectory): the set of states visited by a dynamical system from an initial condition.

Orthogonal Two vectors are orthogonal to each other if their dot product is zero. One-hot vectors are
orthogonal. They are widely separated in input space and tend not to produce cross-talk in learning
tasks.

Orbitofrontal cortex Front-most region of prefrontal cortex associated with decision-making.

CHAPTER 21. GLOSSARY 223

Output dataset A dataset whose rows correspond to output vectors recorded from a neural network.

Output node (Synonym: effector): a node that provides information to an external environment.

Output space The vector space associated with the output layer of a neural network. The set of all possible
output vectors for a neural network.

Padding Entries added to an input in a convolutional layer in order to deal with issues relating to the edges
of inputs. For example can be used to ensure width and height of the output remain the same.

Parallel processing Processing many items at once, concurrently. Contrasted with serial processing, where
items are processed one at a time. Neural networks are known for processing items in parallel, whereas
classical computer process items in serial.

Parameter A quantity for a dynamical system that is fixed as the system runs but can be adjusted and
run again with a different value. Used in the description of bifurcations. In a neural network, the
weights and the biases are usually treated as parameters. This concept is also important when treating
a neural network as a trainable model, whose parameters are updated using optimization techniques
in order to improve performance.

Parietal lobe The lobe located behind the frontal lobe and above the occipital lobe. This part of cortex
plays a role in processing spatial information, integrating multisensory information, and is home to the
somatosensory cortex, which processes information about touch sensation.

Pattern associator A neural network that associates each input vector in a set of input patterns with an
output vector in a set of output (or “target”) patterns. In most cases a pattern associator can be
thought of as a vector-valued function.

Pattern classifier A pattern associator in which the output nodes are two-valued and are [interpreted as
representing category membership. Example]: when the output node of a network is 1, this means it’s
seeing a male face, when it is 0 this means it’s seeing a female face.

Performance Consideration of how a network responds to inputs, while keeping its weights fixed. Often
the term is also used to consider how well it is doing relative to an error function or objective function.

Period of a periodic orbit For a continuous time dynamical system the period is the time it takes the
dynamical system to cover the periodic orbit. For a discrete time dynamical system the period is the
number of points in the periodic orbit.

Periodic orbit A set of points that a dynamical system visits repeatedly and in the same order. An n-cycle
is a type of periodic orbit.

Phase portrait A picture of a state space with important orbits draw in it. A picture of the dynamics of
a system.

Pooling layer A volume-to-volume layer in a convolutional layer which reduces the amount of informa-
tion passing through the network, ideally without altering the essential structure of that information.
Related to subsampling and downsampling.

Positional encoding : A method used in transformer models to add information about the position of
tokens in a sequence to an activity pattern. This is important because transformers process information
in parallel without knowledge of where a token occurs in a sequence.

Pre-processing The process of transforming data into a form usable by a neural network. Compare data-
wrangling.

Prefrontal cortex The front-most part of the frontal cortex, which is involved in executive function,
decision-making, and planning. It is also thought to have an attractor-based structure that supports
the operation of working memory.

CHAPTER 21. GLOSSARY 224

Primary motor cortex Strip in the motor cortex that houses a somatotopic map of the body and controls
simple movement production.

Proposition (Synonyms Statement, sentence): an expression that can be true or false.

Projection A way of representing a group of points in a high-dimensional space in a lower dimensional
space.

Prosopagnosia An impairment in recognizing faces that results from damage to particular regions of the
ventral stream.

Recurrent network A network whose nodes are interconnected in such a way that activity can flow in
repeating cycles.

Receptors Binding sites at the ends of dendrite branches of the post-synaptic neuron where neurotrans-
mitters attach.

Regression task A supervised learning task in which the goal is to create a network that produces outputs
as close as possible to a set of target values. Targets are real-valued rather than binary (as they often
are in classification tasks). An example would be predicting the exact price of a house based on its
features.

Reinforcement learning A form of learning in which a system learns to take actions that maximize reward
in the long run. Actions that produce rewards, or action that lead to actions that produce reward, are
reinforced in such a way that agents learn to obtain rewards and avoid costly situation. In humans,
associated with circuits in the brain stem and basal ganglia. Sometimes treated as a third form of
learning alongside supervised and unsupervised learning.

ReLU A linear activation function that is clipped at 0. It’s activation is 0 for weighted inputs less than or
equal to 0, and it is equal to weighted inputs otherwise. It is a popular activation function for deep
networks. Note that “relu” is short for “rectified linear unit”.

Repeller (Synonym Unstable state): a state or set of states R with the property that if the system is in
a nearby state the system will always go away from R. Fixed points and periodic orbits can both be
repellers.

Representational depth The number of node layers in a feed-forward network. More generally a descrip-
tion of the number of layer-like structures stacked in a neural network. Deeper networks can produce
more complex representations which aggregate representations of earlier layers. (The term “depth”
also refers to a way of describing one component of the size a tensor, as in depth-by-width-by-height.
That is a separate, unrelated use of the term).

Representational width The number of nodes in a node layer of a feed-forward network. More generally a
description of the representational capacity of a layer or layer-like structure in a neural network. Wider
layers can capture more features of the previous layer. This is non-standard terminology adopted in
this book as a useful organizing principle. (The term “width” also refers to a way of describing one
component of the size a tensor, as in depth-by-width-by-height. That is a separate, unrelated use of
the term).

Rescaling A mathematical transformation of a set of samples in a dataset that preserves their relations to
one another but changes their values. Often values are rescaled to lie in the interval (0, 1) or (−1, 1).
One stage of data wrangling.

Retinotopic map A topographic map of locations in the retina. Regions of the brain that are retinotopic
maps have the property that neurons near one another process information about nearby areas in visual
space.

Row vector A vector whose components are written in a row e.g. (2, 1, 3).

CHAPTER 21. GLOSSARY 225

Scalar Usually a real number but in some applications it can be a complex number.When we multiply a
vector by a scalar we are “rescaling” the vector, i.e. changing the vector’s length without changing its
direction.

Scalar multiplication An operation used to “rescale” a vector. It takes a scalar and a vector and returns
a vector with the same direction.

Self Organizing Map (Acronym SOM): A network trained by unsupervised competitive learning, in which
the layout of the output nodes corresponds to the layout of the input space.

Sigmoid activation function An activation function that whose value increases monotoically between a
lower and upper bound. As the input goes infinitely far in the positive direction the value converges
to the upper bound. As the input goes infinitely far in the negative direction the value converges to
the lower bound.

Soma (Synonym Cell body): the central part of a neuron, which the dendrites and axons connect to.

Softmax An activation function which normalizes inputs so that its activations in a layer (or in simbrain,
a neuron group) can be interpreted as a probability distribution. Each activation is between 0 and 1
and the sum over all the activations in a softmax layer is 1.

Somatotopic map A topographic map in the somatosensory cortex that is organized by areas of the body.
Nearby regions of this area represent nearby parts of the body.

Somatosensory cortex Front-most region of the parietal lobe that houses a somatotopic map of the body
parts and processes tactile information from the body.

Span The set of all linear combinations of a set of vectors is called the span of that set of vectors.

Spike A discrete event that models the action potential for a neuron.

Spurious memory An activation pattern in a recurrent network that is stable (a fixed point attractor)
but does not correspond to any of the original patterns the network was trained on. A common form
of spurious memory in a recurrent network is an antipattern.

State A specification of values for all the variables describing a system. The state of a neural network is
typically an activation vector.

State space The set of possible states of a system. The state spaces we consider are vector spaces. Two
specific state spaces we focus on are activation spaces and weight spaces.

State variable A variable associated with a dynamical system that describes one number associated with a
system at a time. Examples include a person’s height and weight, a particle’s position and momentum,
and a neuron’s activation. The state of a system is a vector each of whose components is the value of
one state variable.

Strength A value associated with a weight. Has different interpretations depending on the context. It can,
for example, represent the efficacy of a synapse, or an association between items in memory.

Stride In a filter bank or pooling layer, the number of pixels the filter or kernel or pooling window is moved
when it is scanned across its input.

Sparse matrix A matrix in which most of the entries are 0. A sparse weight matrix represents a set of
connections between nodes where most of the possible connections are missing. Contrasted with dense
matrices and dense or all-to-all connectivity.

Sparsity Of a matrix is a number between 0 and 1 obtained by counting how many zero entries the matrix
has and dividing by the total number of entries. A matrix with no zero entries has a sparsity of 0 and
a matrix with all zero entries has a sparsity of 1.

CHAPTER 21. GLOSSARY 226

Subspace Any subset of a vector space that also happens to satisfy the definition of a vector space. The
sum of any two vectors in a subspace is in the subspace and any scalar multiple of a vector in a subspace
is in the subspace.

Supervised learning A learning rule in which weights are adjusted using an explicit representation of
desired outputs.

Synapse The junction between nerve cells where a information is transferred from one neuron to another.

Synaptic efficacy The degree to which a pre-synaptic spike increases the probability of a post-snyaptic
spike at a synapse.

Target dataset A dataset whose rows correspond to target outputs we’d like a neural network to produce
for corresponding input vectors. For classification tasks, a set of class labels.

Temporal lobe Lobe forward of the occipital lobe and below the parietal and frontal lobes. This region is
involved primarily in processing semantic information about what things are and factual information,
and also houses several important language areas.

Temporal lobe Lobe forward of the occipital lobe and below the parietal and frontal lobes. This region is
involved primarily in processing semantic information about what things are and factual information,
and also houses several important language areas.

Tensor A generalization of the concept of a vector that encopasses numbers, lists of numbers, matrices, sets
of matrices, sets of these sets, etc. The rank of a tensor is the number of indices it takes to specify an
“entry” in it. A number is rank 0 because it requires no indices. A vector is rank 1 because it takes
one index to specify an entry in a vector. A matrix is rank 2, because it takes two numbers to specify
an entry (a row and column). A set of matrices is rank 3, because it takes 3 indices to specify an entry.
Etc.

Thalamus An internal brain structure that relays information from sensory and motor structures to the
cortex.

Threshold potential The membrane potential of the cell above which an action potential is fired.

Threshold activation function A function that has one value for input at or below a fixed amount (the
threshold) and another value for input above the threshold. Usually the value of the function is less
below the threshold than it is above the threshold.

Token A word, word-part, or other sequence of characters. A generalization of the concept of a word to
include other word-like entities. Tokens are associated with vectors in a word embedding.

Token A word, word-part, or other sequence of characters. A generalization of the concept of a word to
include other word-like entities. Tokens are associated with vectors in a word embedding.

Token embedding (Near synonym: Word embedding). A way of associating each token or word in a
document with a numerical vector. Useful in neural networks as a way to convert written text to
network inputs. Modern LLMs utilize these token-level embeddings to deal with out-of-vocabulary
terms, by breaking words down into sub-tokens. Many types of word embedding algorithm exist.

Topology The way the nodes and weights of a network are wired together. A network’s “architecture.”

Tonotopic map A topographic map in the auditory cortex that is organized by frequency of sounds. Similar
sounds (in terms of frequency) are processed by neurons that are near one another.

Transformer architecture A complex feed-forward network structure which includes a “self-attention”
mechanism that allows hidden layers to be “aware” of multiple kinds of relationships between dif-
ferent parts of a sequence of input activations. In the context of LLMs these networks can develop
representations of words even when they are far apart in a document.

CHAPTER 21. GLOSSARY 227

Testing subset A subset of a dataset used for testing a neural network model (or other machine learning
model). This data has not been used in training (it has been “held out”) and thus the testing data
can be used to see how well a model generalizes from what it was trained on to new data.

Training subset A subset of a dataset used for training a neural network model (or other machine learning
model). Contrasted with testing subset.

Truth table A table whose columns are the inputs and outputs of a Boolean functions.

Turing Test The Turing Test is a behavioral test that can be used to determine whether a system is
intelligent or not. The standard form of the test is as follows: If a human judge communicating with
a system via a text interface cannot determine whether the system is human or not, the system passes
the test and can be deemed intelligent. The test derives from a similar test due to Alan Turing (the
“imitation game”) but is not identical with the imitation game. There is controversy surrounding
whether the test is an adequate test of intelligence.

Unsupervised learning A learning rule in which weights are adjusted without an explicit representation
of desired outputs.

Vector Ordered list of numbers (n-tuple of numbers). The numbers in a vector are its components. In
many cases a vector represents a point. For example: (2, 2) is a vector with two components, which
represents a point in a plane.

Vector addition (Synonym Vector sum): two vectors with the same number of components can be added
(or summed) by adding their corresponding components. Example: (1, 2) + (3, 4) = (4, 6).

Vector subtraction Two vectors with the same number of components can be subtracted by subtracting
their corresponding components.Example: (1, 2) − (3, 4) = (−2,−2).

Vector space A collection of vectors, all of which have the same number of components. For example,
the plane is a collection of vectors, all of which have two components. (Note that this is an informal
definition; to be a vector space, a set of vectors must meet further requirements as well).

Vector-valued function A function that takes vectors as inputs and produces vectors as outputs. (A more
precise designation would be “vector valued function of vector valued inputs”).

Ventral stream Pathway that extends from the occipital lobe into the temporal lobes, underlying process-
ing of visual object recognition.

Vesicles The parts at the end of axon terminals where the neurotransmitters are stored for release. Upon
triggering caused by action potentials, these vesicles will open and release the neurotransmitters into
the synaptic cleft.

Visual cortex Rear-most region in the occipital lobe involved in visual processing, where primary and
secondary visual cortex are housed.

Weight (Synonyms Connection, artificial synapse): a simulated synapse or synapse-like element in a neural
network.

Weighted Input (Synonym Net input): Dot product of an input vector and a fan-in weight vector, plus a
bias term. Notated ni for neuron i.

Weight layer A set of weights treated as a group. Often they are the collection of weights connecting one
node layer to another, which can in turn be represented by a weight matrix.

Weight space The set of possible weight vectors for a given neural network.

Weight vector A vector describing the strengths of the weights in a neural network.

CHAPTER 21. GLOSSARY 228

Wernicke’s area A region of the temporal lobe associated with written and spoken language comprehen-
sion. Damage to this area can lead to Wernicke’s aphasia, affecting the ability to understand language,
even if language production remains intact.

Winner-Take-All A pool of nodes structured (often with mutually inhibitory connections) so that the node
receiving the most inputs weighted inputs “wins” and becomes active while the other nodes become
inactive. Also a type of non-local activation function where the node in the group receiving the most
net input is active at a winning value and the rest take on a losing value (usually zero).

Zero vector A vector whose components are all 0. Adding the zero vector to any vector gives the same
vector.

Appendix A

Logic Gates in Neural Networks
Jeff Yoshimi

We opened the book by noting that neural networks are very different from classical computers. They
are trained, not programmed, they transform data using weight matrices rather than explicit rules, they
gracefully degrade, and they are can easily handle noisy inputs. We made the contrast by comparing
neural networks with Turing Machines, a simple type of machine that captures the kinds of things classical
computers do. One thing classical computers do is simple logical computations. In fact, all the incredible
things computers do can be boiled down to a bunch of simple logical computations. Logic gates are
fundamental components of the circuits that make up digital computers. If a neural network could do the
same thing, it would show that neural networks could, at least in principle, do anything a digital computer
could do.

This problem occupied McCulloch and Pitts, the early pioneers of neural networks: how to make neural
networks do logical computations, and implement logic gates. It turns out, they can do this (and thus, neural
networks are as powerful as digital computers!) [99]. Understanding these logic functions and how neural
networks can compute them is the goal of this section.

We will consider 4 kinds of logic gate: NOT, AND, OR, and XOR. We can think of these in logical
terms, as boolean functions. These functions take truth values as inputs, and produce other truth values
as outputs. Here is roughly how these four boolean functions work:

• NOT P is True if P is false.

• P AND Q is True if both P and Q are True.

• P OR Q is True if P is True, Q is True, or both P and Q are True.

• P XOR Q is true if one of P or Q is True, but not both.

To implement these on a neural network (and see in more detail how they work), we can map True to the
number 1 and False to the number 0, and then think of these as vector-valued functions that take vectors of
binary values as inputs and produce a single 0 or 1 as an output. It is standard in logic to represent boolean
functions with truth tables, which are basically the tables we have been using to represent vector-valued
functions in neural networks. Here is a truth table that represents the logic of AND:

P Q P AND Q
1 (T) 1 (T) 1 (T)
1 (T) 0 (F) 0 (F)
0 (F) 1(T) 0 (F)
0 (F) 0 (F) 0 (F)

In this table, P and Q can be interpreted as the truth values of propositions. We can replace P and
Q with any sentence. A proposition (also known as a statement or sentence) is an expression that can

229

APPENDIX A. LOGIC GATES IN NEURAL NETWORKS 230

be true or false. For example, P could stand for “I ate pizza” and Q could stand for “I drank soda.”
In response to a proposition you can say “I agree, that’s true” or “I disagree, that’s false”. Questions,
commands, exclamations, and fragments of sentences (like words by themselves) are not propositions. These
are propositions: “2+2 = 4”, “The moon is made of Swiss cheese”, “The mind is distinct from the brain”.
These are not propositions: “What time is it?”, “Swiss cheese”,“Ouch!”, “Pass the salt.” Notice that it’s
odd to say “I agree” or “I disagree” to the non-propositions, but that it is fine to say that to the propositions.

The four rows of the table then show all possible combinations of truth values for two propositions. It
could be that I didn’t eat pizza or drink soda (row 4), that I drank soda and ate pizza (row 1), that I only
ate pizza (row 2), etc. The third column shows us the output of the boolean function for each of these
combinations of truth values. For example, focusing on row 1: if I did eat pizza (P) and drink soda (Q),
then it’s also true that I ate pizza and drank soda (P AND Q).

NOT is also a boolean function, from one input to one output, that basically reverses the truth value of
the input when it produces its output:

P NOT P
1 (T) 0 (F)
0 (F) 1 (T)

Here is a combined truth table showing several other two-valued boolean functions as extra columns,
including OR and XOR. XOR is “exclusive” or, which is only true if exactly one of P and Q is true. OR is
“inclusive” or, which is true when one or both of P and Q is true.

P Q P AND Q P OR Q P XOR Q
1 (T) 1 (T) 1 (T) 1 (T) 0 (F)
1 (T) 0 (F) 0 (F) 1 (T) 1 (T)
0 (F) 1 (T) 0 (F) 1 (T) 1 (T)
0 (F) 0 (F) 0 (F) 0 (F) 0 (F)

We can implement any of these functions in a neural network. The input layers will have two nodes,
and the output layer will have one node. For example, a network to compute AND would only produce an
output of 1 if both input nodes were set to 1. In all other cases of binary inputs the output would be 0.
Using binary output functions and appropriate weights and thresholds, it is not so hard to make AND and
OR gates.

NOT would just have two nodes. A 0 would produce a 1, and a 1 would produce a 0. This can be done
using a binary output node with a bias (so that it is on, by default, above threshold), and a negative weight.

XOR is harder because it requires a few layers of nodes (a point that is important when we talk about
supervised learning), but basically it involves combining an OR gate to the output and an intermediate AND
gate that inhibits the output. Examples of these are shown in Fig. A.1.

Figure A.1: Networks to implement basic logic gates.

Boolean functions can also be combined, to produce things like (P AND (Q OR NOT R)). To see what
the truth table looks like for this type of network, you can try an online resource like http://web.stanford.
edu/class/cs103/tools/truth-table-tool/. Neural networks to implement this type of function are also

http://web.stanford.edu/class/cs103/tools/truth-table-tool/
http://web.stanford.edu/class/cs103/tools/truth-table-tool/

APPENDIX A. LOGIC GATES IN NEURAL NETWORKS 231

not too difficult to make by combining together the other networks, e.g the output of an OR network is one
of the two inputs to the AND network, to make (P AND (Q OR NOT R)).

A complex example, in which sample sentences have been used instead of the boring propositional vari-
ables P, Q, R etc., is shown in Fig. A.2.

Figure A.2: Network to implement a more complex boolean function.

Figure Attributions

1.1 Left: Mark Miller, Nelson Lab, Brandeis University. Licensed Under: CC BY-ND; Right:
Simbrain screenshot. 8

1.2 Simbrain screenshot with additional elements added by Pamela Payne. 9
1.3 Simbrain screenshots with additional elements added by Pamela Payne. 11
1.4 Adapted from a creative commons image by Aphex34 at https://commons.wikimedia.org/

wiki/File:Typical_cnn.png . 11
1.5 Pamela Payne. 12
1.6 Simbrain screenshot. 13
1.7 Simbrain screenshot. 15
1.8 Localist representation . 17
1.9 Distributed representation . 17

2.1 Jeff Yoshimi. 18
2.2 From Heikkonen et al., 1999 [66]. Licensed Under CC BY-NC 19
2.3 Layout by Pamela Payne. Top Left: ; Bottom Left: ; Middle: Screenshot by Zach Tosi ;

Right: From Hagmann et al., 2008 [?], Licensed Under CC BY 20
2.4 From McClelland and Rumelhart, 1989 [?]. 22
2.5 From McClelland and Seidenberg, 1989 [143]. Redrawn by Pamela Payne. 23
2.6 Left: From https://grey.colorado.edu/emergent/index.php/File:Screenshot_vision.

png; Right: Spaun screenshot. Cf. [?]. 24

3.1 Pamela Payne and Jeff Yoshimi. 25
3.2 From https://faculty.washington.edu/chudler/papy.html 26
3.3 From Grüsser, 1990 [?] . 26
3.4 From [8], pp. 110-111. 27
3.5 From [49]. 28
3.6 From [99]. 29
3.7 From Hebb, 2005 [65] . 30
3.8 From Groome, 2013 [?] . 31
3.9 Left: http://www.rutherfordjournal.org/images/TAHC_rosenblatt-sepia.jpg; Right:

http://www.newyorker.com/wp-content/uploads/2012/11/frank-rosenblatt-perception.

jpg . 32
3.10 From [?]. 33

4.1 Pamela Payne. 36
4.2 Pamela Payne. 38
4.3 Adapted from original work by Pamela Payne. 39
4.4 Jeff Yoshimi. 39
4.5 Left: Pamela Payne; Right: Pamela Payne, using text taken from the Emergent Wiki. 41
4.6 Pamela Payne. 42
4.7 From [?], which is in turn based on [80] and [59]. 43
4.8 Pamela Payne. 44
4.9 Pamela Payne. 45

232

https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://commons.wikimedia.org/wiki/File:Typical_cnn.png
https://grey.colorado.edu/emergent/index.php/File:Screenshot_vision.png
https://grey.colorado.edu/emergent/index.php/File:Screenshot_vision.png
https://faculty.washington.edu/chudler/papy.html
http://www.rutherfordjournal.org/images/TAHC_rosenblatt-sepia.jpg
http://www.newyorker.com/wp-content/uploads/2012/11/frank-rosenblatt-perception.jpg
http://www.newyorker.com/wp-content/uploads/2012/11/frank-rosenblatt-perception.jpg

FIGURE ATTRIBUTIONS 233

4.10 Pamela Payne. 46
4.11 Pamela Payne. 47
4.12 From lecture slides by David Touretsky. 48

5.1 Left: Simbrain screenshot; Right: Jeff Yoshimi. 50
5.2 Scott Hotton. 51
5.3 Scott Hotton. 52
5.4 Jeff Yoshimi. 54
5.5 Jeff Yoshimi using Wolfram Alpha. 55
5.6 Jeff Yoshimi. 56

6.1 Scott Hotton. 61
6.2 Simbrain screenshots. 61
6.3 Scott Hotton’s modification of an image from the Cartographic Research Lab at the University

of Alabama. 63
6.4 Scott Hotton. 64
6.5 Simbrain screenshot. 65
6.6 (left) The height and weight coordinates for the five individuals in the table. The odd num-

bered points are nearly collinear to a line with a slope of about 60 while the even numbered
points are more spread out. (right) The vector h points to the right in the horizontal direction
while the vector u points in the upward vertical direction. The length of u is about 3.5 times
the length of h and the length of w is about 8 times the length of u. The cosine similarity of
h and w is about 0.9925 and the angle between h and w is about 7o. 68

6.7 Simbrain screenshot from Jeff Yoshimi. 70
6.8 Simbrain screenshots modified by Jeff Yoshimi. 71
6.9 Jeff Yoshimi. 72
6.10 Jeff Yoshimi. 74
6.11 Jeff Yoshimi. 74
6.12 Jeff Yoshimi. 76
6.13 Jeff Yoshimi. 77
6.14 Jeff Yoshimi. 77
6.15 Jeff Yoshimi. 78
6.16 Soraya Boza. 80
6.17 Soraya Boza. 80
6.18 Jeff Yoshimi. 83

7.1 Screenshot of the Motor Trend Car Road Tests dataset included with R. 87
7.2 Simbrain screenshot with graphical elements added by Pamela Payne. 88
7.3 Screenshot of the Motor Trend Car Road Tests dataset included in R. 89
7.4 Screenshot of Motor Trend Car Road Tests dataset included with R. 90
7.5 Jeff Yoshimi. 91
7.6 Jeff Yoshimi. 92
7.7 Simbrain screenshot with graphical elements added by Pamela Payne. 93
7.8 Simbrain screenshot with graphical elements added by Pamela Payne. 93

8.1 From [39]. 97
8.2 From https://commons.wikimedia.org/wiki/File:The_house_at_the_end_of_the_street.

jpg . 98
8.3 Adapted from an image generated using http://vectors.nlpl.eu/explore/embeddings/en/.100
8.4 From [103]. 102
8.5 Generated using Simbrain. 105
8.6 Generated using Simbrain. 105

9.1 Simbrain screenshot. 110
9.2 Simbrain screenshot . 111

https://commons.wikimedia.org/wiki/File:The_house_at_the_end_of_the_street.jpg
https://commons.wikimedia.org/wiki/File:The_house_at_the_end_of_the_street.jpg
http://vectors.nlpl.eu/explore/embeddings/en/

FIGURE ATTRIBUTIONS 234

9.3 Simbrain screenshot . 113
9.4 Pamela Payne. 114
9.5 Simbrain screenshot. 115
9.6 From https://grey.colorado.edu/CompCogNeuro/index.php/File:fig_v1_orientation_

cols_data.jpg. 116
9.7 From Kohonen, 1998 [78]. 117

10.1 Pamela Payne. 119
10.2 Left: Simbrain screenshot; Right: Jeff Yoshimi. 120
10.3 Left: From https://commons.wikimedia.org/wiki/File:Simple_gravity_pendulum.svg;

Right: Scott Hotton. 121
10.4 https://commons.wikimedia.org/wiki/File:Lorenz_attractor2.svg. 122
10.5 Scott Hotton. 123
10.6 Pamela Payne. 124
10.7 Scott Hotton. 125
10.8 Scott Hotton. 125
10.9 From http://www.scholarpedia.org/article/File:Hopfieldattractor.jpg. Licensed Un-

der CC BY-NC-SA . 126
10.10Simbrain screenshots. 127

11.1 Simbrain screenshot. 129
11.2 From Hertz, Krogh, and Palmer, 1991 [?]. 129
11.3 Pamela Payne, using elements from Hertz, Krogh, and Palmer, 1991 [?]. 130
11.4 Simbrain screenshot. 130
11.5 Simbrain screenshot . 131
11.6 Simbrain screenshot . 132

12.1 Jeff Yoshimi. 134
12.2 Simbrain screenshot. 135
12.3 Jeff Yoshimi. 136
12.4 Jeff Yoshimi. 137
12.5 Jeff Yoshimi. 138
12.6 Jeff Yoshimi. 140
12.7 Jeff Yoshimi. 140
12.8 Jeff Yoshimi. 140
12.9 Jeff Yoshimi. 141
12.10Jeff Yoshimi. 142
12.11Jeff Yoshimi and Scott Hotton. 143

13.1 Jeff Yoshimi. 147
13.2 Jeff Yoshimi. 148
13.3 Jeff Yoshimi. 149
13.4 Jeff Yoshimi. 151
13.5 Pamela Payne. 152

14.1 Soraya Boza, adapting this image from User Cecbur, https://commons.wikimedia.org/

wiki/File:Convolutional_Neural_Network_NeuralNetworkFilter.gif, with labels added
by Jeff Yoshimi. 155

14.2 Jeff Yoshimi . 156
14.3 Soraya Boza. 157
14.4 Soraya Boza and Jeff Yoshimi. 158
14.5 Soraya Boza. 158
14.6 Soraya Boza and Jeff Yoshimi. 159
14.7 Jeff Yoshimi . 160
14.8 Soraya Boza and Jeff Yoshimi . 162

https://grey.colorado.edu/CompCogNeuro/index.php/File:fig_v1_orientation_cols_data.jpg
https://grey.colorado.edu/CompCogNeuro/index.php/File:fig_v1_orientation_cols_data.jpg
https://commons.wikimedia.org/wiki/File:Simple_gravity_pendulum.svg
https://commons.wikimedia.org/wiki/File:Lorenz_attractor2.svg
http://www.scholarpedia.org/article/File:Hopfieldattractor.jpg
https://commons.wikimedia.org/wiki/File:Convolutional_Neural_Network_NeuralNetworkFilter.gif
https://commons.wikimedia.org/wiki/File:Convolutional_Neural_Network_NeuralNetworkFilter.gif

FIGURE ATTRIBUTIONS 235

15.1 Jeff Yoshimi. 164
15.2 Pamela Payne and Jeff Yoshimi. 165
15.3 Generated by Jeff Yoshimi based on [39]. 166
15.4 Jeff Yoshimi. 167
15.5 Yamins. 168
15.6 Yamins. 168

16.1 Adapted from Karpathy, 2015 [74]. 170
16.2 Simbrain screenshot. 172
16.3 Jeff Yoshimi. 173
16.4 From Karpathy, 2015 [74]. 175

17.1 From [?]. 177
17.2 Jeff Yoshimi . 178
17.3 Jeff Yoshimi . 179
17.4 Jeff Yoshimi . 180
17.5 Jeff Yoshimi . 181
17.6 Jeff Yoshimi with consultation from Tim Meyer. 182
17.7 Jeff Yoshimi with consultation from Tim Meyer. 184
17.8 https://arxiv.org/abs/2005.14165. 185
17.9 Soraya Boza. 187
17.10Figure borrowed from Kello et al. (2025, under review) with author permission. 188
17.11From [?]. 190
17.12From [161]. 190
17.13From [141]. 191

18.1 Jeff Yoshimi; the line art for the probe was generated by ChatGPT. 196
18.2 Simbrain screenshot from Jeff Yoshimi. 197
18.3 Figure from [153] . 198
18.4 From [112] . 199

19.1 Simbrain Screenshot by Zoë Tosi . 202
19.2 Simbrain screenshot by Zoë Tosi . 203
19.3 Simbrain screenshot . 204
19.4 Simbrain screenshot by Zoë Tosi . 208
19.5 Simbrain screenshot by Zoë Tosi . 209
19.6 From Bi and Poo, 1998 [14] . 210

20.1 Fernando, Chrisantha and Sojakka, Sampsa. 212
20.2 Nils Bertschinger and Thomas Natchläger . 213
20.3 Zoë Tosi. 214

A.1 Simbrain screenshot . 230
A.2 Simbrain screenshot . 231

https://arxiv.org/abs/2005.14165

Bibliography

[1] Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich, Stella Frank, Ellie Pavlick, and Anders Søgaard.
Can language models encode perceptual structure without grounding? a case study in color. In
Proceedings of the 25th Conference on Computational Natural Language Learning, pages 109–132,
2021.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

[3] Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and Aitor Soroa. A study
on similarity and relatedness using distributional and wordnet-based approaches. 2009.

[4] Gati Aher, Rosa I. Arriaga, and Adam T. Kalai. Using large language models to simulate multiple
humans and replicate human subject studies. In International Conference on Machine Learning, pages
337–371. PMLR, 2023.

[5] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
2018.

[6] S-I Amari. Learning patterns and pattern sequences by self-organizing nets of threshold elements.
IEEE Transactions on computers, 100(11):1197–1206, 1972.

[7] James A Anderson and Edward Rosenfeld. Talking nets: An oral history of neural networks. MiT
Press, 2000.

[8] Bernard J Baars. The cognitive revolution in psychology. The Guilford Press, 1986.

[9] Alexander Bain. Mind and Body the Theories of Their Relation by Alexander Bain. Henry S. King &
Company, 1873.

[10] Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances, 2021.

[11] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pages 610–623, 2021.

[12] Emily M Bender and Alexander Koller. Climbing towards nlu: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th annual meeting of the association for computational
linguistics, pages 5185–5198, 2020.

[13] Nils Bertschinger and Thomas Natschläger. Real-time computation at the edge of chaos in recurrent
neural networks. Neural computation, 16(7):1413–1436, 2004.

[14] Robert C Berwick, Paul Pietroski, Beracah Yankama, and Noam Chomsky. Poverty of the stimulus
revisited. Cognitive science, 35(7):1207–1242, 2011.

[15] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons: dependence
on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18(24):10464–
10472, 1998.

236

BIBLIOGRAPHY 237

[16] Christopher M Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

[17] Amy L Boggan and Chih-Mao Huang. Chess expertise and the fusiform face area: Why it matters.
Journal of Neuroscience, 31(47):16895–16896, 2011.

[18] Emma Borg. Llms, turing tests and chinese rooms: The prospects for meaning in large language
models. Inquiry, pages 1–31, 2025.

[19] Edwin Garrigues Boring. History of experimental psychology. Genesis Publishing Pvt Ltd, 1929.

[20] Jeffrey S Bowers, Gaurav Malhotra, Marin Dujmović, Milton Llera Montero, Christian Tsvetkov,
Valerio Biscione, Guillermo Puebla, Federico G Adolfi, John Hummel, Rachel Flood Heaton, et al.
Deep problems with neural network models of human vision. Preprint, 2022.

[21] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Christopher Olah.
Towards monosemanticity: Decomposing language models with dictionary learning. Transformer Cir-
cuits Thread, 2023.

[22] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-
shot learners. arXiv preprint arXiv:2005.14165, 2020.

[23] AE Bryson and YC Ho. Applied optimal control. Optimization, Estimation and Control, 1969.

[24] Emanuele Bugliarello, Laurent Sartran, Aishwarya Agrawal, Lisa Anne Hendricks, and Aida Ne-
matzadeh. Measuring progress in fine-grained vision-and-language understanding. arXiv preprint
arXiv:2305.07558, 2023.

[25] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature Reviews Neuroscience, 10(3):186–198, 2009.

[26] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language
models without supervision, 2024.

[27] Malcolm Burrows. The neurobiology of an insect brain. Oxford University Press Oxford, 1996.

[28] Joana Cabral, Etienne Hugues, Olaf Sporns, and Gustavo Deco. Role of local network oscillations in
resting-state functional connectivity. Neuroimage, 57(1):130–139, 2011.

[29] Charlotte Caucheteux and Jean-Rémi King. Brains and algorithms partially converge in natural lan-
guage processing. Communications biology, 5(1):134, 2022.

[30] Ted Chiang. Chatgpt is a blurry jpeg of the web. The New Yorker, 2023.
urlhttps://www.newyorker.com/science/annals-of-artificial-intelligence/chatgpt-is-a-blurry-jpeg-of-
the-web.

[31] Noam Chomsky, Ian Roberts, and Jeffrey Watumull. Noam chomsky: The false promise of chatgpt.
The New York Times, 8, 2023.

[32] Jonathan Gabel Christiansen, Mathias Gammelgaard, and Anders Søgaard. Large language models
partially converge toward human-like concept organization. In NeurIPS 2023 Workshop on Symmetry
and Geometry in Neural Representations.

[33] Andy Clark. Whatever next? predictive brains, situated agents, and the future of cognitive science.
Behavioral and brain sciences, 36(3):181–204, 2013.

[34] Kevin Clark. What does bert look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341,
2019.

BIBLIOGRAPHY 238

[35] David Cole. The Chinese Room Argument. In Edward N. Zalta and Uri Nodelman, editors, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter 2024
edition, 2024.

[36] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders
find highly interpretable features in language models, 2023.

[37] Danica Dillion, Niket Tandon, Yuling Gu, and Kurt Gray. Can ai language models replace human
participants? Trends in Cognitive Sciences, 27(7):597–600, 2023.

[38] Hubert L Dreyfus. What computers still can’t do: a critique of artificial reason. MIT press, 1992.

[39] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared
Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition.
Transformer Circuits Thread, 2022.

[40] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

[41] Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, and
Daniel Rasmussen. A large-scale model of the functioning brain. science, 338(6111):1202–1205, 2012.

[42] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[43] Jeffrey L Elman. Rethinking innateness: A connectionist perspective on development, volume 10. MIT
press, 1996.

[44] Katrin Erk. Vector space models of word meaning and phrase meaning: A survey. Language and
Linguistics Compass, 6(10):635–653, 2012.

[45] Laurene V Fausett. Fundamentals of neural networks. Prentice-Hall, 1994.

[46] Chrisantha Fernando and Sampsa Sojakka. Pattern recognition in a bucket. In European Conference
on Artificial Life, pages 588–597. Springer, 2003.

[47] Stanley Finger. Origins of neuroscience: a history of explorations into brain function. Oxford Univer-
sity Press, USA, 2001.

[48] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. Placing search in context: The concept revisited. In Proceedings of the 10th international
conference on World Wide Web, pages 406–414, 2001.

[49] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, pages 10–32,
1957.

[50] Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1):3–71, 1988.

[51] Michael C. Frank and Noah D. Goodman. Predicting pragmatic reasoning in language games. Science,
336(6084):998–998, 2012.

[52] Sigmund Freud, Marie Ed Bonaparte, Anna Ed Freud, Ernst Ed Kris, Eric Trans Mosbacher, and
James Trans Strachey. Project for a scientific psychology. Basic Books, 1954.

[53] Kunihiko Fukushima and Sei Miyake. Neocognitron: A new algorithm for pattern recognition tolerant
of deformations and shifts in position. Pattern recognition, 15(6):455–469, 1982.

[54] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural networks, 6(6):801–806, 1993.

BIBLIOGRAPHY 239

[55] Michael S Gazzaniga, RB Ivry, and GR Mangun. Cognitive Neuroscience, New York: W. W. Norton
& Company, 2002.

[56] Yoav Goldberg. Assessing bert’s syntactic abilities. arXiv preprint arXiv:1901.05287, 2019.

[57] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[58] Harold Goodglass and Norman Geschwind. Language disorders (aphasia). Handbook of perception,
7:389–428, 1976.

[59] Noah D Goodman and Michael C Frank. Pragmatic language interpretation as probabilistic inference.
Trends in cognitive sciences, 20(11):818–829, 2016.

[60] H Paul Grice. Meaning. The philosophical review, 66(3):377–388, 1957.

[61] Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58. Brill, 1975.

[62] David Groome. An introduction to cognitive psychology: Processes and disorders. Psychology Press,
2013.

[63] Otto-Joachim Grüsser. ‘on the ‘seat of the soul’, cerebral localization theories in medieval times and
later. In Brain–perception, cognition: proceedings of the 18th Göttingen Neurobiology Conference.

[64] Umut Güçlü and Marcel AJ van Gerven. Deep neural networks reveal a gradient in the complexity of
neural representations across the ventral stream. Journal of Neuroscience, 35(27):10005–10014, 2015.

[65] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J Honey, Van J Wedeen,
and Olaf Sporns. Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7):e159, 2008.

[66] Oussama H Hamid. Chatgpt and the chinese room argument: An eloquent ai conversationalist lacking
true understanding and consciousness. In 2023 9th International Conference on Information Technology
Trends (ITT), pages 238–241. IEEE, 2023.

[67] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[68] David Hartley. Observations on Man: His Frame, His Duty and His Expectations... Leake & Frederick,
1749.

[69] David Hartley. Observations on man, his frame, his duty, and his expectations. T. Tegg and son, 1834.

[70] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall, 2 edition, 1998.

[71] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology Press,
2005.

[72] Jukka Heikkonen and Jouko Lampinen. Building industrial applications with neural networks. In
Proceedings of the European symposium on intelligent techniques, pages 3–4, 1999.

[73] John A Hertz, Anders S Krogh, and Richard G Palmer. Introduction to the theory of neural computa-
tion, volume 1. Basic Books, 1991.

[74] Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics, 41(4):665–695, 2015.

[75] John J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[76] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[77] Scott Hotton and Jeff Yoshimi. Extending dynamical systems theory to model embodied cognition.
Cognitive Science, 35(3):444–479, 2011.

BIBLIOGRAPHY 240

[78] Philipp K Janert. Data Analysis with Open Source Tools: A Hands-on Guide for Programmers and
Data Scientists. ” O’Reilly Media, Inc.”, 2010.

[79] Cameron Jones and Ben Bergen. Does gpt-4 pass the turing test? In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 5183–5210, 2024.

[80] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven A Siegelbaum, and AJ Hudspeth. Prin-
ciples of neural science, volume 4. McGraw-hill New York, 2000.

[81] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks. Andrej Karpathy blog,
2015.

[82] Christopher Kello and Polyphony Bruna. Emergent mental lexicon functions in chatgpt. volume 46,
2024.

[83] Judy S. Kim, Giulia V. Elli, and Marina Bedny. Knowledge of animal appearance among sighted and
blind adults. Proceedings of the National Academy of Sciences, 116(23):11213–11222, 2019.

[84] David King. Large language models and the rationalist empiricist debate. arXiv preprint
arXiv:2410.12895, 2024.

[85] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[86] Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and
brain information processing. Annual review of vision science, 1:417–446, 2015.

[87] Trenton Kriete, David C Noelle, Jonathan D Cohen, and Randall C O’Reilly. Indirection and symbol-
like processing in the prefrontal cortex and basal ganglia. Proceedings of the National Academy of
Sciences, 110(41):16390–16395, 2013.

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[89] Andrey Kurenkov. A brief history of neural nets and deep learning. Skynet Today, 2020.

[90] Nur Lan, Emmanuel Chemla, and Roni Katzir. Large language models and the argument from the
poverty of the stimulus. Linguistic Inquiry, pages 1–28, 2024.

[91] Andreea Lazar, Gordon Pipa, and Jochen Triesch. Sorn: a self-organizing recurrent neural network.
Frontiers in computational neuroscience, 3:23, 2009.

[92] Yann Le Cun. Learning process in an asymmetric threshold network. In Disordered systems and
biological organization, pages 233–240. Springer, 1986.

[93] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[94] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989.

[95] Alessandro Lenci. Distributional models of word meaning. Annual review of Linguistics, 4:151–171,
2018.

[96] Daniel S Levine. Introduction to neural and cognitive modeling. Psychology Press, 2000.

[97] Martha Lewis and Melanie Mitchell. Evaluating the robustness of analogical reasoning in large language
models. Transactions on Machine Learning Research (TMLR), February 2025. Originally appeared as
a TMLR submission on OpenReview.

[98] Molly Lewis, Martin Zettersten, and Gary Lupyan. Distributional semantics as a source of visual
knowledge. Proceedings of the National Academy of Sciences, 116(39):19237–19238, 2019.

BIBLIOGRAPHY 241

[99] Bertrand Liétard, Mostafa Abdou, and Anders Søgaard. Do language models know the way to rome?
In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks
for NLP, pages 510–517, 2021.

[100] Tal Linzen and Marco Baroni. Syntactic structure from deep learning. Annual Review of Linguistics,
7(1):195–212, 2021.

[101] Qiawen Liu, Jeroen van Paridon, and Gary Lupyan. Learning about color from language. Communi-
cations Psychology, 3:60, 2025.

[102] Wolfgang Maass. Computing with spikes. Special Issue on Foundations of Information Processing of
TELEMATIK, 8(1):32–36, 2002.

[103] Gloria S. Marmor. Age at onset of blindness and the development of the semantics of color names.
Journal of Experimental Child Psychology, 25(2):267–278, 1978.

[104] David Marr and W Thomas Thach. A theory of cerebellar cortex. In From the Retina to the Neocortex,
pages 11–50. Springer, 1991.

[105] James L McClelland. Retrieving general and specific information from stored knowledge of specifics.
In Proceedings of the third annual meeting of the cognitive science society. Citeseer, 1981.

[106] James L McClelland, Felix Hill, Maja Rudolph, Jason Baldridge, and Hinrich Schütze. Placing language
in an integrated understanding system: Next steps toward human-level performance in neural language
models. Proceedings of the National Academy of Sciences, 117(42):25966–25974, 2020.

[107] James L McClelland and David E Rumelhart. Explorations in parallel distributed processing: A hand-
book of models, programs, and exercises. MIT press, 1989.

[108] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[109] Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy sup-
pression: Comprehensively understanding an attention head, 2023.

[110] Edmund S Meltzer and Gonzalo M Sanchez. The Edwin Smith Papyrus: updated translation of the
trauma treatise and modern medical commentaries. ISD LLC, 2014.

[111] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems,
26, 2013.

[112] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 conference of the north american chapter of the association
for computational linguistics: Human language technologies, pages 746–751, 2013.

[113] Raphaël Millière and Cameron Buckner. A philosophical introduction to language models-part i:
Continuity with classic debates. https://arxiv.org/abs/2401.03910, 2024.

[114] Raphaël Millière and Cameron Buckner. A philosophical introduction to language models-part ii: The
way forward. arXiv preprint arXiv:2405.03207, 2024.

[115] Daniel Miner and Jochen Triesch. Plasticity-driven self-organization under topological constraints
accounts for non-random features of cortical synaptic wiring. PLoS Comput Biol, 12(2):e1004759,
2016.

[116] Marvin Minsky and Seymour Papert. Perceptrons. MIT press, 1969.

[117] Melanie Mitchell. Why ai is harder than we think. arXiv preprint arXiv:2104.12871, 2021.

BIBLIOGRAPHY 242

[118] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[119] Wael MY Mohamed. Arab and muslim contributions to modern neuroscience. IBRO History of
Neuroscience, 169(3):255, 2008.

[120] Ida Momennejad, Hosein Hasanbeig, Felipe Vieira, Hiteshi Sharma, Robert O. Ness, Nebojsa Jojic,
Hamid Palangi, and Jonathan Larson. Evaluating cognitive maps and planning in large language
models with cogeval. In Advances in Neural Information Processing Systems, volume 36, pages 69736–
69751, 2023.

[121] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

[122] Annalee Newitz. Movie written by algorithm turns out to be hilarious and intense. Ars Technica, 2016.

[123] Yael Niv. Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3):139–154,
2009.

[124] David C Noelle and Jeffrey Yoshimi. Artificial intelligence and computational theories of mind. In
Mind, Cognition, and Neuroscience, pages 127–148. Routledge, 2022.

[125] Christopher Olah. Understanding lstm networks. GITHUB blog, posted on August, 27:2015, 2015.

[126] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah.
In-context learning and induction heads. Transformer Circuits Thread, 2022.

[127] C. Opus and A. Lawsen. The illusion of the illusion of thinking: A comment on shojaee et al. arXiv,
abs/2506.09250, June 2025. Includes AI-generated reasoning by “C. Opus (Claude Opus, Anthropic)”
and human editing by Open Philanthropy’s A. Lawsen.

[128] Randall C. O’Reilly, Yuko Munakata, Michael J. Frank, Thomas E. Hazy, and Contributors. Compu-
tational Cognitive Neuroscience. Online Book, 4th Edition, URL: https://CompCogNeuro.org, 2012.

[129] Randall C O’Reilly, Thomas E Hazy, and Seth A Herd. The leabra cognitive architecture: How to
play 20 principles with nature. The Oxford Handbook of Cognitive Science, page 91, 2016.

[130] Michael PA Page, Robert J Howard, John T O’Brien, Muriel S Buxton-Thomas, and Alan D Pickering.
Use of neural networks in brain spect to diagnose alzheimer’s disease. The Journal of Nuclear Medicine,
37(2):195, 1996.

[131] DB Parker. Learning-logic (tr-47). Center for Computational Research in Economics and Management
Science. MIT-Press, Cambridge, Mass, 8, 1985.

[132] Alexandre Pasquiou, Yair Lakretz, John Hale, Bertrand Thirion, and Christophe Pallier. Neural lan-
guage models are not born equal to fit brain data, but training helps. arXiv preprint arXiv:2207.03380,
2022.

[133] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, 2014.

[134] Steven T Piantadosi. Zipf’s word frequency law in natural language: A critical review and future
directions. Psychonomic bulletin & review, 21:1112–1130, 2014.

https://CompCogNeuro.org

BIBLIOGRAPHY 243

[135] Gualtiero Piccinini. The first computational theory of mind and brain: a close look at mcculloch and
pitts’s “logical calculus of ideas immanent in nervous activity”. Synthese, 141(2):175–215, 2004.

[136] Steven Pinker and Michael T Ullman. The past and future of the past tense. Trends in cognitive
sciences, 6(11):456–463, 2002.

[137] Marcel Proust. Remembrance of things past, volume 2. Wordsworth Editions, 2006.

[138] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

[139] Russell Richie, Sachin Grover, and Fuchiang Rich Tsui. Inter-annotator agreement is not the ceiling
of machine learning performance: Evidence from a comprehensive set of simulations. In Proceedings
of the 21st Workshop on Biomedical Language Processing, pages 275–284, 2022.

[140] Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive psychology for
deep neural networks: A shape bias case study. In International conference on machine learning, pages
2940–2949. PMLR, 2017.

[141] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in bertology: What we know about how
bert works. Transactions of the Association for Computational Linguistics, 8:842–866, 2020.

[142] Frank Rosenblatt. Perceptron simulation experiments. Proceedings of the IRE, 48(3):301–309, 1960.

[143] Frank Rosenblatt. A comparison of several perceptron models. Self-Organizing Systems, pages 463–484,
1962.

[144] David E Rumelhart and James L McClelland. On learning the past tenses of english verbs. Psycholin-
guistics: Critical Concepts in Psychology, 4:216–271, 1986.

[145] David E Rumelhart, James L McClelland, PDP Research Group, et al. Parallel distributed processing,
vol. 1, 1986.

[146] Armin Saysani, Michael C. Corballis, and Paul M. Corballis. Colour envisioned: Concepts of colour in
the blind and sighted. Visual Cognition, 26(5):382–392, 2018.

[147] Adam Scherlis, Kshitij Sachan, Adam S. Jermyn, Joe Benton, and Buck Shlegeris. Polysemanticity
and capacity in neural networks, 2025.

[148] Jürgen Schmidhuber. Deep learning: our miraculous year 1990-1991. arXiv preprint arXiv:2005.05744,
2020.

[149] Jürgen Schmidhuber, Sepp Hochreiter, et al. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[150] Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hosseini, Nancy Kan-
wisher, Joshua B Tenenbaum, and Evelina Fedorenko. The neural architecture of language: Integra-
tive modeling converges on predictive processing. Proceedings of the National Academy of Sciences,
118(45):e2105646118, 2021.

[151] Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction and reward.
Science, 275(5306):1593–1599, 1997.

[152] Mark S Seidenberg and James L McClelland. A distributed, developmental model of word recognition
and naming. Psychological review, 96(4):523, 1989.

[153] Terrence J Sejnowski and Charles R Rosenberg. Parallel networks that learn to pronounce english
text. Complex systems, 1(1):145–168, 1987.

BIBLIOGRAPHY 244

[154] O. G. Selfridge. Pandemonium: a paradigm for learning in Mechanisation of Thought Processes.
In Proceedings of a Symposium Held at the National Physical Laboratory, pages 513–526, London,
November 1958.

[155] Helaine Selin. Encyclopaedia of the history of science, technology, and medicine in non-westen cultures.
Springer Science & Business Media, 2013.

[156] Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning models
via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

[157] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[158] Paul Smolensky. On the proper treatment of connectionism. Behavioral and brain sciences, 11(1):1–23,
1988.

[159] Anders Søgaard. Grounding the vector space of an octopus: Word meaning from raw text. Minds and
Machines, 33(1):33–54, 2023.

[160] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

[161] John Sutton. Philosophy and memory traces: Descartes to connectionism. Cambridge University Press,
1998.

[162] Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner, Callum
McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees, Joshua Bat-
son, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024.

[163] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv preprint
arXiv:1905.05950, 2019.

[164] Sean Trott. Can large language models help augment english psycholinguistic datasets? Behavior
Research Methods, 56:6082–6100, 2024.

[165] Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini, and
Monte MacDiarmid. Steering language models with activation engineering, 2024.

[166] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[167] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-
attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen, David
Traum, and Llúıs Màrquez, editors, Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5797–5808, Florence, Italy, July 2019. Association for Computational
Linguistics.

[168] John Von Neumann. The principles of large-scale computing machines. Annals of the History of
Computing, 3(3):263–273, 1981.

[169] Maya Zhe Wang and Benjamin Y Hayden. Latent learning, cognitive maps, and curiosity. Current
Opinion in Behavioral Sciences, 38:1–7, 2021.

BIBLIOGRAPHY 245

[170] Taylor Webb, Keith J Holyoak, and Hongjing Lu. Emergent analogical reasoning in large language
models. Nature Human Behaviour, 7(9):1526–1541, 2023.

[171] Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.
D. dissertation, Harvard University, 1974.

[172] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[173] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain. Trends in
cognitive sciences, 23(3):235–250, 2019.

[174] Bernard Widrow. Adaline: Smarter than sweet, 1963.

[175] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

[176] Norbert Wiener. Cybernetics: Control and communication in the animal and the machine. Wiley New
York, 1948.

[177] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280, 1989.

[178] Ludwig Wittgenstein. Philosophical investigation.(tr. gem anscombe) oxford. UK: Blackwell, 1953.

[179] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand sensory
cortex. Nature neuroscience, 19(3):356–365, 2016.

[180] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

[181] George Kingsley Zipf. The meaning-frequency relationship of words. The Journal of general psychology,
33(2):251–256, 1945.

[182] David Zipser. Identification models of the nervous system. Neuroscience, 47(4):853–862, 1992.

[183] Marco Zorzi, Alberto Testolin, and Ivilin P Stoianov. Modeling language and cognition with deep
unsupervised learning: a tutorial overview. Frontiers in psychology, 4:515, 2013.

[184] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico
Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai transparency,
2025.

	Preface
	Introduction
	Structure of Neural Networks
	Computation in Neural Networks
	Performance vs. Learning
	The Three Object Detector
	Neural vs. Symbolic Computation

	Applications of Neural Networks
	Engineering vs. Scientific applications
	Engineering uses of neural networks
	Computational neuroscience
	Connectionism
	Computational Cognitive Neuroscience
	From science to engineering and from engineering to science

	History of Neural Networks
	Pre-history
	Birth of Neural Networks
	The Cognitive Revolution
	The Age of the Perceptron
	The ``Dark Ages''
	First Resurgence: Backprop and The PDP Group
	Second Decline and Second Resurgence: Convolutional Networks
	The Age of Generative AI

	Basic Neuroscience
	Neurons and synapses
	Neurons
	Synapses and neural dynamics
	Neuromodulators

	The Brain and its Neural Networks
	Cortex
	The Occipital Lobe
	The Parietal and Temporal Lobes
	The Frontal Lobe
	Other Neural Networks in the Brain

	Activation Functions
	Weighted Inputs and Activation Functions
	Threshold Activation Functions
	Linear Activation Functions
	Sigmoid Activation Functions
	Non-local activation functions
	Exercises

	Linear Algebra and Neural Networks
	Vectors and Vector Spaces
	Vectors and Vector Spaces in Neural Networks
	Dimensionality Reduction
	The Dot Product
	Other vector comparison methods
	Vector Spaces as Metric Spaces
	Matrices
	Weight Matrices
	Matrix Multiplication (Part 1)
	Matrix Multiplication (Applications)
	Matrix Multiplication (Part 2)
	Flow Diagrams
	Tensors
	Appendix: Vector Operations
	Appendix: Elementwise (Hadamard) Product
	Appendix: Block Matrix Representations
	Exercises

	Data Science and Learning Basics
	Data Science Workflow
	Datasets
	Data Wrangling (or Preprocessing)
	Datasets for Neural Networks
	Generalization and Testing Data
	Supervised vs. Unsupervised Learning
	Other types of model and learning algorithm

	Word Embeddings
	Background in Computational Linguistics
	Document embeddings
	Word embeddings
	Co-occurrence Based Word Embeddings
	Co-occurrence Matrices
	Neural Network Based Embeddings
	Geometric Properties of Word Embeddings
	Evaluation of Word Embeddings

	Workflow: Creating Word Embeddings
	Sentence segmentation
	Word tokenization
	Normalization
	Create the word embeddings
	Using a word embedding to make a document embedding

	Unsupervised Learning
	Introduction
	Hebbian Learning
	Hebbian Pattern Association for Feed-Forward Networks
	Oja's Rule and Dimensionality Reduction Networks
	Competitive learning
	Simple Competitive Networks
	Self Organizing Maps

	Dynamical Systems Theory
	Dynamical Systems Theory
	Parameters and State Variables
	Classification of orbits
	The Shapes of Orbits
	Attractors and Repellers
	Combining these classifications

	Unsupervised Learning in Recurrent Networks
	Introduction
	Hebbian Pattern Association for Recurrent Networks
	Some features of recurrent auto-associators
	Hopfield Networks

	Supervised Learning
	Labeled datasets
	Supervised Learning: A First Intuitive Pass
	Classification and Regression
	Visualizing Classification as Partitioning an Input Region into Decision Regions
	Visualizing Regression as Fitting a Surface to a Cloud of Points
	Error
	Error Surfaces and Gradient Descent
	Expansion of these methods
	SSE Exercises

	Least Mean Squares and Backprop
	Least Mean Squares Rule
	LMS Example
	Linearly Separable and Inseparable Problems
	Backprop
	XOR and Internal Representations
	LMS Exercises

	Convolutional Neural Networks
	Convolutional Layers
	Applying a Filter to a Volume
	Filter Banks (Representational Width)
	Multiple Convolutional Layers (Representational Depth)
	Pooling
	Flattening and Dense Layers

	Applications of Convolutional Networks

	Internal Representations in Neural Networks
	Internal Representations in Neural Networks
	Net Talk
	Elman's Prediction Networks
	Deep Vision Networks
	Other Examples

	Supervised Recurrent Networks
	Types of Supervised Recurrent Networks
	Simple Recurrent Networks
	Backpropagation Through Time
	Recurrent Networks and Language Generation
	Limitations of Supervised Recurrent Networks

	Transformer Architectures and LLMs
	Learning to speak Internetese
	Training Using Next-Word Prediction
	How Text is Generated from a Feed-Forward Network
	The Transformer Architecture
	Blocks
	Softmax Outputs
	Parameters and hyperparameters

	LLMs and the Cognitive Sciences
	Stochastic Parrot or Genuine Intelligence?
	LLMs and Behavioral Sciences
	LLMs and Neuroscience
	LLMs and Philosophy

	Mechanistic Interpretability
	Historical Context
	The Toolbox of Mechanistic Interpretability
	Linear Probes
	Sparse Autoencoders
	Activation Addition

	Major Results in Mechanistic Interpretability
	Toy Models
	Induction Heads

	Spiking Models: Neurons & Synapses
	Level of abstraction
	Background: The Action Potential
	Integrate and Fire Models
	The Heaviside step function
	Linear Integrate and Fire

	Synapses with Spiking Neurons
	Spike Responses

	Long-term plasticity
	Spike-Timing Dependent Plasticity (STDP)
	STDP

	Reservoir Networks
	Glossary
	Logic Gates in Neural Networks
	Figure Attributions
	References

